RP2040 A microcontroller by Raspberry Pi

Raspberry P1 Pico C/C++ SDK
Libraries and tools for

C/C++ development on
RP2040 microcontrollers

Raspberry Pi Ltd

Raspberry Pi Pico C/C++ SDK

Colophon

Copyright © 2020-2024 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2024-02-02
build-version: 169135e-dirty

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be
found throughout this book. Source code included in the documentation is Copyright © 2020-2023
Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“RESOURCES") ARE PROVIDED BY RASPBERRY PI LTD (“RPL") "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO
EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPL's Standard Terms. RPL’s provision of the RESOURCES does not
expand or otherwise modify RPL's Standard Terms including but not limited to the disclaimers and warranties
expressed in them.

]
Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Raspberry Pi Pico C/C++ SDK

Table of contents

Colophon - oo 1
Legal disclaimer notice 1
T.About the SDK. .« ..o 7
T INtroduCtion « .. 7
1.2. Anatomy of a SDK Application 7
2.SDK architecture 10
2.1.The Build System 10
2.2.Every Library is an INTERFACE 11
2.3.SDK Library Structure 12
2.3.1. Higher-level Libraries. 12
2.3.2. Runtime Support (pico_runtime, pico_standard_link) 12
2.3.3. Hardware Support Libraries 13
2.3.4. Hardware Structs Library 14
2.3.5. Hardware Registers Library 15
2.3.6. TiNYUSB POrt. . ..o 16
2.3.7.Wi-Fion Pico W oo 16
2.3.8. Bluetoothon PicOW ... 17
2.4, Directory StrUCTUreo 18
2.4.7. Locations of Files. 18
2.5. Conventions for Library Functions 19
2.5.1. Function Naming Conventions. 20
2.5.2. Return Codes and Error Handling. 20
2.53.Useof Inline Functions 21
2.5.4. Builder Pattern for Hardware Configuration APIs 22
2.6. Customisation and Configuration Using Preprocessor variables 22
2.6.1. Preprocessor Variables via Board Configuration File 23
2.6.2. Preprocessor Variables Per Binary or Library viaCMake 23
2.7. SDK RUNTIME © . il 24
2.7.1. Standard Input/Output (stdio) Support 24
2.7.2. Floating-point SUPPOIt. 24
2.7.3. Hardware Divider 27
2.8. MUIti-Core SUPPOIt. - . ..o 28
2.9.USINg CHt. oo 28
2710, NexXt StePS . . . i 29
3. Using programmable I/0 (P10). 30
3.1. Whatis Programmable I/0 (PIO)?. 30
310 Background. . 30
3.1.2.1/0 Using dedicated hardware onyour PC 30
3.1.3.1/0 Using dedicated hardware on your Raspberry Pi or microcontroller. 30
3.1.4.1/0 Using software control of GPIOs ("bit-banging") 31
3.1.5. Programmable /0 Hardware using FPGAs and CPLDs, 32
3.1.6. Programmable I/O Hardware using PIO 32
3.2. Getting started with PIO 33
3.2.1. AFirst PIO Applicationo 33
3.2.2. AReal Example: WS2812 LEDS 37
3.2.3. PIO and DMA (A Logic AnalySer) 44
3.2.4. Further exampleso 49
3.3.Using PIOASM, the PIO Assembler. 49
3.3l UsSage oo 50
3.3.2.DIreCtiVES . . 50
3330 Values i 51
3.3 4 EXPresSIiONS . ..o 52
3.3.5.ComMmMENtS .. 52
3.3.6. Labels oo 52
3.3.7.InStruCtions.ol 52

Table of contents

Raspberry Pi Pico C/C++ SDK
]

3.3.8. PseudoinstruCtions 53
3.3.9. OQutput pass through 53
3.3.10. Language generators 54
3.4.PIO Instruction Set Reference 59
A SUMMATY. oo 59
34 2. M 60
LA 3 WAL oo 61
B IN ool 62
A5 OUT 63
34,6, PUSH . i 64
BT PULL .o 64
34 8. MOV . 65
349 IRQ . . 67
B0, SET i 68

4. Library documentation 70
A0 Hardware APIS. 71
400 hardware_adC. 71
4.1.2. hardware_base. 76
4.1.3. hardware_claim 78
4.7.4. hardware_clocks 81
4.1.5. hardware_divider 88
4.71.6.hardware_dma 97
4.1.7. hardware_exception 114
4.1.8. hardware_flash. 116
A4.1.9. hardware_gpio 119
47170, hardware_i2C 139
4107, hardware_interp. 147
A1.02. hardware_irg 156
4103 hardware_pio 164
4104, hardware_pll. . 198
4115 hardware_pWm ... 199
4.1.716. hardware_resets 210
A7 hardware_rC 212
47108, hardware_spi 215
A.1.719. hardware_SYNC. 222
4.1.20. hardware_timer 229
A1.27. hardware_uart 235
A.1.22. hardware_Vreg 243
4.1.23. hardware_watchdog 243
A.1.24. hardWar€_XOSC. 246
4.2 High Level APls . 247
4.2.1.pico_async_context. 248
422 pico_flash . . 260
4.2.3.picoi2c_slave ... 262
4.2.4. pico_multicore 264
A4.2.5.pico_rand ... 272
4.2.6.pico_stdlib .. 274
A.2.7.PICO_SYNC © .o 276
4.2.8. pICo_time 289
4.2.9. pico_unique_id 309
4210, pico_Util « 310
4.3. Third-party Libraries 314
4.3.7.tinyusb_device 315
4.3.2.tinyusb_host. . .. 315
4.4 Networking Libraries 315
447, pico_btstack. 315
AA42.PICO_IWID. . 317
A4.4.3.pico_CyWA3_driVer 319
4.4.4. pico_cywa3_arch 321
4.5. Runtime Infrastructure 358

Table of contents

Raspberry Pi Pico C/C++ SDK
]

4.5.1.boot_stage? 359
4.5.2.pico_base . .. 359
4.5.3. pico_binary_info. 360
4.5.4. pico_bit_OpS 360
4.5.5.pico_bootrom 361
4.5.6. pico_bootsel_via_double_reset 364
4.5.7. PICO_CXX_OPTIONS o 364
4.5.8. pico_divider 364
4.5.9.pico_double .. . 372
4.5.10. pico_float 372
4517, PICO_INOA_OPS.o 373
4.512.pico_malloc 373
4,513, PICO_MEM_OPS. - - - oo 373
4.5.74. pico_platform . .. 373
4515, pico_printf. . 382
4.5.16. pico_runtime 382
A.517.pico_stdio. 382
4.5.18. pico_standard_link. 387
4.6. External APl Headers 387
4.6.1. boot_picobOoOt 387
4.6.2.b00t_UT2 387
4.7.pico_usb_reset_interface. 388
Appendix A: App NOTES . . . 389
Attachinga 7 segment LED via GPIO. 389
Wiring information 389
Listof Files . .. 389

Bill of Materials. 391
DHT-11, DHT-22, and AM2302 SeNSOIS. 392
Wiring information 392
Listof Files 393

Bill of Materials. 395
Attachinga 16x2 LCD via TTL 395
Wiring information 396
Listof Files 396

Bill of Materials. 399
Attaching a microphone usingthe ADC. 400
Wiring information 400
Listof Files 401

Bill of Materials. 402
Attaching a BME280 temperature/humidity/pressure sensorvia SPl. 403
Wiring information 403
Listof Files . . . 403

Bill of Materials. 408
Attaching a MPU9250 accelerometer/gyroscope via SPl. 408
Wiring information 408
Listof Files . .. 409

Bill of Materials. 412
Attaching a MPU6050 accelerometer/gyroscope via 12C 412
Wiring information 412
Listof Files 413

Bill of Materials. 415
Attachinga 16x2 LCD via 12C 415
Wiring information 416
Listof Files 416

Bill of Materials. 419
Attaching a BMP280 temp/pressure sensorvia 12C 420
Wiring information 420
Listof Files . .. 420

Bill of Materials. 425
Attaching a LIS3DH Nano Accelerometer viai2c. 425

]
Table of contents 4

Raspberry Pi Pico C/C++ SDK
]

Wiring information 426
Listof Files . .. 426

Bill of Materials. 429
Attaching a MCP9808 digital temperature sensorvial2C 429
Wiring information 429
Listof Files . .. 430

Bill of Materials. 432
Attaching a MMAB8451 3-axis digital accelerometervia I2C. 433
Wiring information 433
Listof Files . . . 433

Bill of Materials. 436
Attaching an MPL3115A2 altimeter via 12C 436
Wiring information 437
Listof Files . .. 437

Bill of Materials. 441
Attachingan OLED display via 12C 441
Wiring information 442
Listof Files . .. 443

Bill of Materials. 453
Attaching a PAT1010D Mini GPS module via I12C. 454
Wiring information 454
Listof Files . .. 454

Bill of Materials. 457
Attaching a PCF8523 Real Time Clock via 12C 458
Wiring information 458
Listof Files . .. 458

Bill of Materials. 461
Interfacing 1-Wire devices to the Pico. 462
Wiring information 462
Bill of materials. 463
Listof files. 463
Communicating as master and slave via SPl 470
Wiring information 470
OUIPUTS . oo 471
Listof Files . .. 472
Bill of Materials. 476
Appendix B: SDK configuration. 477
Configuration Parameters. 478
Appendix C: CMake build configuration 488
Configuration Parameters. 488
Control of binary type produced (advanced). 489
Appendix D: Board configuration 490
Board Configuration. 490
The Configuration files 490
Building applications with a custom board configuration. 492
Available configuration parameters. 492
Appendix E: Building the SDK APl documentation. 493
Appendix F: SDKrelease history. 494
Release 1.0.0 (20/Jan/20271) 494
Release 1.0.1 (01/Feb/20271) . . . 494
Boot Stage 2 il 494
Release 1.1.0 (05/Mar/2027) 494
Backwards incompatibility 495
Release 1.1.1 (OT/API/2021) « . 495
Release 1.1.2 (07/ApPr/20271) .. . 495
Release 1.2.0 (03/Jun/20271) 495
New/improved Board headers 495
Updated TinyUSB 10 0.10.7 495
Added CMSIS core headers 496
APLIMPrOVEMENTS 496

]
Table of contents 5

Raspberry Pi Pico C/C++ SDK
]

General code improvements. 498
SV D 498
PIOASIM. .« 498
RTOS interoperability 498
CMake build changes. 498
Boot Stage 2o 498
Release 1.3.0 (02/NOV/2021) 498
Updated TinyUSB 10 0.12.0 498
New Board SUPPOIt 499
Updated SVD, hardware_regs, hardware_structs 499
Behavioural Changes 500
Other Notable Improvements 500
CMake build 502
PIOASIMI. .« oo 502

el Ut 502
Release 1.3.1 (18/May/2022). 502
New Board SUPPOIt 502
Notable Library Changes/Improvements 503
BUIld . . 504
PIOASIMI. © . i 504

el Ul 504
Release 1.4.0 (30/JUn/2022) 504
New Board SUPPOIt 504
Wireless SUPPOIt .« . ..o 504
Notable Library Changes/Improvements 505
BUII . 507
Release 1.5.0 (11/Feb/2023) 507
New Board SUppOrt 507
Library Changes/Improvements. 507
New Libraries 510
BUIld . 511
Bluetooth Support for Pico W (BETA) 511
Release 1.5.1 (14/Jun/2023) 512
Board SUPPOIt. . . . 512
Library Changes/Improvements. 512
New Libraries 513
Miscellaneous. 514
BUIld . 514
Bluetooth Support for PicoW . . . 514
Appendix G: Documentation release history. 516

Table of contents

Raspberry Pi Pico C/C++ SDK

Chapter 1. About the SDK

1.1. Introduction

The SDK (Software Development Kit) provides the headers, libraries and build system necessary to write programs for
RP2040-based devices such as Raspberry Pi Pico in C, C++ or Arm assembly language.

The SDK is designed to provide an APl and programming environment that is familiar both to non-embedded C
developers and embedded C developers alike. A single program runs on the device at a time with a conventional main()
method. Standard C/C++ libraries are supported along with APIs for accessing RP2040’s hardware, including DMA,
IRQs, and the wide variety fixed function peripherals and PIO (Programmable 10).

Additionally the SDK provides higher level libraries for dealing with timers, USB, synchronization and multi-core
programming, along with additional high level functionality built using PIO such as audio. These libraries should be
comprehensive enough that your application code rarely, if at all, needs to access hardware registers directly. However,
if you do need or prefer to access the raw hardware, you will also find complete and fully-commented register definition
headers in the SDK. There’s no need to look up addresses in the datasheet.

The SDK can be used to build anything from simple applications, full fledged runtime environments such as
MicroPython, to low level software such as RP2040’s on-chip bootrom itself.

Looking to get started?

This book documents the SDK APIs, explains the internals and overall design of the SDK, and explores
some deeper topics like using the PIO assembler to build new interfaces to external hardware. For a
quick start with setting up the SDK and writing SDK programs, Getting started with Raspberry Pi Pico is
the best place to start.

1.2. Anatomy of a SDK Application

Before going completely depth-first in our traversal of the SDK, it's worth getting a little breadth by looking at one of the
SDK examples covered in Getting started with Raspberry Pi Pico, in more detail.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink/blink.c

1 e

2 * Copyright (c) 20620 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause

5

6

7 #include "pico/stdlib.h”

8

©

int main() {
10 #ifndef PICO_DEFAULT_LED_PIN
11 #warning blink example requires a board with a regular LED

12 #else

13 const uint LED_PIN = PICO_DEFAULT_LED_PIN;
14 gpio_init(LED_PIN);

15 gpio_set_dir(LED_PIN, GPIO_OUT);

16 while (true) {

17 gpio_put(LED_PIN, 1);

18 sleep_ms(250);

19 gpio_put(LED_PIN, 9);

]
1.1. Introduction 7

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://github.com/raspberrypi/pico-examples/blob/master/blink/blink.c

Raspberry Pi Pico C/C++ SDK
]

20 sleep_ms(250) ;
21 }

22 #endif

23 }

This program consists only of a single C file, with a single function. As with almost any C programming environment, the
function called main() is special, and is the point where the language runtime first hands over control to your program,
after doing things like initialising static variables with their values. In the SDK the main() function does not take any
arguments. It's quite common for the main() function not to return, as is shown here.

© NoTE

The return code of main() is ignored by the SDK runtime, and the default behaviour is to hang the processor on exit.

At the top of the C file, we include a header called pico/stdlib.h. This is an umbrella header that pulls in some other
commonly used headers. In particular, the ones needed here are hardware/gpio.h, which is used for accessing the general
purpose 10s on RP2040 (the gpio_xxx functions here), and pico/time.h which contains, among other things, the sleep_ms
function. Broadly speaking, a library whose name starts with pico provides high level APIs and concepts, or aggregates
smaller interfaces; a name beginning with hardware indicates a thinner abstraction between your code and RP2040 on-
chip hardware.

So, using mainly the hardware_gpio and pico_time libraries, this C program will blink an LED connected to GPI025 on and
off, twice per second, forever (or at least until unplugged). In the directory containing the C file (you can click the link
above the source listing to go there), there is one other file which lives alongside it.

Directory listing of pico-examples/blink

blink
—— blink.c

L—— CMakelists.txt

0 directories, 2 files

The second file is a CMake file, which tells the SDK how to turn the C file into a binary application for an RP2040-based
microcontroller board. Later sections will detail exactly what CMake is, and why it is used, but we can look at the
contents of this file without getting mired in those details.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink/CMakeLists.txt

add_executable(blink
blink.c

)

pull in common dependencies
target_link_libraries(blink pico_stdlib)

0w N O o~ WN =

create map/bin/hex file etc.
pico_add_extra_outputs(blink)

©

10
11 # add url via pico_set_program_url
12 example_auto_set_url(blink)

The add_executable function in this file declares that a program called blink should be built from the C file shown earlier.
This is also the target name used to build the program: in the pico-examples repository you can say make blink in your
build directory, and that name comes from this line. You can have multiple executables in a single project, and the pico-
examples repository is one such project.

]
1.2. Anatomy of a SDK Application 8

https://github.com/raspberrypi/pico-examples/blob/master/blink/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

The target_link_libraries is pulling in the SDK functionality that our program needs. If you don't ask for a library, it
doesn’t appear in your program binary. Just like pico/stdlib.h is an umbrella header that includes things like pico/time.h
and hardware/gpio.h, pico_stdlib is an umbrella library that makes libraries like pico_time and hardware_gpio available to
your build, so that those headers can be included in the first place, and the extra C source files are compiled and linked.
If you need less common functionality, like accessing the DMA hardware, you can call those libraries out here (e.g.
listing hardware_dma before or after pico_stdlib).

We could end the CMake file here, and that would be enough to build the blink program. By default, the build will
produce an ELF file (executable linkable format), containing all of your code and the SDK libraries it uses. You can load
an ELF into RP2040's RAM or external flash through the Serial Wire Debug port, with a debugger setup like gdb and
openocd. It's often easier to program your Raspberry Pi Pico or other RP2040 board directly over USB with BOOTSEL
mode, and this requires a different type of file, called UF2, which serves the same purpose here as an ELF file, but is
constructed to survive the rigours of USB mass storage transfer more easily. The pico_add_extra_outputs function
declares that you want a UF2 file to be created, as well as some useful extra build output like disassembly and map
files.

© NoOTE

The ELF file is converted to a UF2 with an internal SDK tool called elf2uf2, which is bootstrapped automatically as
part of the build process.

The example_auto_set_url function is to do with how you are able to read this source file in this document you are reading
right now, and click links to take you to the listing on GitHub. You'll see this on the pico-examples applications, but it's not
necessary on your own programs. You are seeing how the sausage is made.

Finally, a brief note on the pico_stdlib library. Besides common hardware and high-level libraries like hardware_gpio and
pico_time, it also pulls in components like pico_standard_link —which contains linker scripts and crté for SDK — and
pico_runtime, which contains code running between crt@ and main(), getting the system into a state ready to run code by
putting things like clocks and resets in a safe initial state. These are incredibly low-level components that most users
will not need to worry about. The reason they are mentioned is to point out that they are ultimately explicit dependencies
of your program, and you can choose not to use them, whilst still building against the SDK and using things like the
hardware libraries.

]
1.2. Anatomy of a SDK Application 9

Raspberry Pi Pico C/C++ SDK

Chapter 2. SDK architecture

RP2040 is a powerful chip, and in particular was designed with a disproportionate amount of system RAM for its point
in the microcontroller design space. However it is an embedded environment, so RAM, CPU cycles and program space
are still at a premium. As a result the tradeoffs between performance and other factors (e.g. edge case error handling,
runtime vs compile time configuration) are necessarily much more visible to the developer than they might be on other,
higher level platforms.

The intention within the SDK has been for features to just work out of the box, with sensible defaults, but also to give the
developer as much control and power as possible (if they want it) to fine tune every aspect of the application they are
building and the libraries used.

The next few sections try to highlight some of the design decisions behind the SDK: the how and the why, as much as
the what.

© NoTE

Some parts of this overview are quite technical or deal with very low-level parts of the SDK and build system. You
might prefer to skim this section at first and then read it thoroughly at a later time, after writing a few SDK
applications.

2.1. The Build System

The SDK uses CMake to manage the build. CMake is widely supported by IDEs (Integrated Development Environments),
which can use a CMakelists.txt file to discover source files and generate code autocomplete suggestions. The same
CMakeLists.txt file provides a terse specification of how your application (or your project with many distinct applications)
should be built, which CMake uses to generate a robust build system used by make, ninja or other build tools. The build
system produced is customised for the platform (e.g. Windows, or a Linux distribution) and by any configuration
variables the developer chooses.

Section 2.6 shows how CMake can set configuration defines for a particular program, or based on which RP2040 board
you are building for, to configure things like default pin mappings and features of SDK libraries. These defines are listed
in Appendix B, and Board Configuration files are covered in more detail in Appendix D. Additionally Appendix C
describes CMake variables you can use to control the functionality of the build itself.

Apart from being a widely used build system for C/C++ development, CMake is fundamental to the way the SDK is
structured, and how applications are configured and built.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink/CMakeLists. txt

add_executable(blink
blink.c

)

1
2

8

4

5 # pull in common dependencies

6 target_link_libraries(blink pico_stdlib)
7
8

create map/bin/hex file etc.
9 pico_add_extra_outputs(blink)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(blink)

Looking here at the blink example, we are defining a new executable blink with a single source file blink.c, with a single
dependency pico_stdlib. We also are using a SDK provided function pico_add_extra_outputs to ask additional files to be

]
2.1. The Build System 10

https://cmake.org
https://github.com/raspberrypi/pico-examples/blob/master/blink/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

produced beyond the executable itself (.uf2, .hex, .bin, .map, .dis).

The SDK builds an executable which is bare metal, i.e. it includes the entirety of the code needed to run on the device
(other than floating point and other optimized code contained in the bootrom within RP2040).

pico_stdlib is an INTERFACE library and provides all of the rest of the code and configuration needed to compile and link
the blink application. You will notice if you do a build of blink (https://github.com/raspberrypi/pico-examples/blob/
master/blink/blink.c) that in addition to the single blink.c file, the inclusion of pico_stdlib causes about 40 other source
files to be compiled to flesh out the blink application such that it can be run on RP2040.

2.2. Every Library is an INTERFACE

All libraries within the SDK are INTERFACE libraries. (Note this does not include the C/C++ standard libraries provided by
the compiler). Conceptually, a CMake INTERFACE library is a collection of:

® Source files

® |nclude paths

® Compiler definitions (visible to code as #defines)
® Compile and link options

® Dependencies (on other INTERFACE libraries)

The INTERFACE libraries form a tree of dependencies, with each contributing source files, include paths, compiler
definitions and compile/link options to the build. These are collected based on the libraries you have listed in your
CMakelists.txt file, and the libraries depended on by those libraries, and so on recursively. To build the application, each
source file is compiled with the combined include paths, compiler definitions and options and linked into an executable
according to the provided link options.

When building an executable with the SDK, all of the code for one executable, including the SDK libraries, is (re)compiled
for that executable from source. Building in this way allows your build configuration to specify customised settings for
those libraries (e.g. enabling/disabling assertions, setting the sizes of static buffers), on a per-application basis, at
compile time. This allows for faster and smaller binaries, in addition of course to the ability to remove support for
unwanted features from your executable entirely.

In the example CMakelists.txt we declare a dependency on the (INTERFACE) library pico_stdlib. This INTERFACE library itself
depends on other INTERFACE libraries (pico_runtime, hardware_gpio, hardware_uart and others). pico_stdlib provides all the
basic functionality needed to get a simple application running and toggling GPIOs and printing to a UART, and the linker
will garbage collect any functions you don't call, so this doesn’t bloat your binary. We can take a quick peek into the
directory structure of the hardware_gpio library, which our blink example uses to turn the LED on and off:

hardware_gpio
—— CMakelists.txt
—— gpio.c
L—— include
L—— hardware
L—— gpio.h

Depending on the hardware_gpio INTERFACE library in your application causes gpio.c to be compiled and linked into your
executable, and adds the include directory shown here to your search path, so that a #include "hardware/gpio.h" will pull
in the correct header in your code.

INTERFACE libraries also make it easy to aggregate functionality into readily consumable chunks (such as pico_stdlib),
which don’t directly contribute any code, but depend on a handful of lower-level libraries that do. Like a metapackage,
this lets you pull in a group of libraries related to a particular goal without listing them all by name.

]
2.2. Every Library is an INTERFACE 1

https://github.com/raspberrypi/pico-examples/blob/master/blink/blink.c
https://github.com/raspberrypi/pico-examples/blob/master/blink/blink.c

Raspberry Pi Pico C/C++ SDK

O IMPORTANT

SDK functionality is grouped into separate INTERFACE libraries, and each INTERFACE library contributes the code and
include paths for that library. Therefore you must declare a dependency on the INTERFACE library you need directly (or
indirectly through another INTERFACE library) for the header files to be found during compilation of your source file (or
for code completion in your IDE).

O NoTE

As all libraries within the SDK are INTERFACE libraries, we will simply refer to them as libraries or SDK libraries from
now on.

2.3. SDK Library Structure

The full API listings are given in Chapter 4; this chapter gives an overview of how SDK libraries are organised, and the
relationships between them.

There are a number of layers of libraries within the SDK. This section starts with the highest-level libraries, which can be
used in C or C++ applications, and navigates all the way down to the hardware_regs library, which is a comprehensive set
of hardware definitions suitable for use in Arm assembly as well as C and C++, before concluding with a brief note on
how the TinyUSB stack can be used from within the SDK.

2.3.1. Higher-level Libraries

These libraries (pico_xxx) provide higher-level APIs, concepts and abstractions. The APIs are listed in High Level APIs.
These may be libraries that have cross-cutting concerns between multiple pieces of hardware (for example the sleep_
functions in pico_time need to concern themselves both with RP2040’s timer hardware and with how processors enter
and exit low power states), or they may be pure software infrastructure required for your program to run smoothly. This
includes libraries for things like:

® Alarms, timers and time functions
® Multi-core support and synchronization primitives
e Utility functions and data structures

These libraries are generally built upon one or more underlying harduare_ libraries, and often depend on each other.

O NoTE

More libraries will be forthcoming in the future (e.g. - Audio support (via PIO), DPI/VGA/MIPI Video support (via PIO)
file system support, SDIO support via (PIO)), most of which are available but not yet fully
supported/stable/documented in the Pico Extras GitHub repository.

2.3.2. Runtime Support (pico_runtime, pico_standard_link)

These are libraries that bundle functionality which is common to most RP2040-based applications. APIs are listed in
Runtime Infrastructure.

pico_runtime aggregates the libraries (listed in pico_runtime) that provide a familiar C environment for executing code,
including:

® Runtime startup and initialization
* Choice of language level single/double precision floating point support (and access to the fast on-RP2040

2.3. SDK Library Structure 12

https://github.com/raspberrypi/pico-extras

Raspberry Pi Pico C/C++ SDK
]

implementations)

Compact printf support, and mapping of stdout

Language level / and % support for fast division using RP2040's hardware dividers

The function runtime_init() which performs minimal hardware initialisation (e.g. default PLL and clock
configuration), and calls functions with constructor attributes before entering main()

pico_standard_link encapsulates the standard linker setup needed to configure the type of application binary layout in
memory, and link to any additional C and/or C++ runtime libraries. It also includes the default crt, which provides the
initial entry point from the flash second stage bootloader, contains the initial vector table (later relocated to RAM), and
initialises static data and RAM-resident code if the application is running from flash.

O NoOTE

There is more high-level discussion of pico_runtime in Section 2.7

@ TIF

Both pico_runtime and pico_standard_link are included with pico_stdlib

2.3.3. Hardware Support Libraries

These are individual libraries (hardware_xxx) providing actual APIs for interacting with each piece of physical
hardware/peripheral. They are lightweight and provide only thin abstractions. The APIs are listed in Hardware APls.

These libraries generally provide functions for configuring or interacting with the peripheral at a functional level, rather
than accessing registers directly, e.g.

pio_sm_set_wrap(pio, sm, bottom, top);
rather than:

pio->sm[sm].execctrl =

(pio->sm[sm].execctrl & ~(PIO_SMO_EXECCTRL_WRAP_TOP_BITS |
PIO_SM@_EXECCTRL_WRAP_BOTTOM_BITS)) |

(bottom << PIO_SMO_EXECCTRL_WRAP_BOTTOM_LSB) |

(top << PIO_SM@_EXECCTRL_WRAP_TOP_LSB);

The hardware_ libraries are intended to have a very minimal runtime cost. They generally do not require any or much
RAM, and do not rely on other runtime infrastructure. In general their only dependencies are the hardware_structs and
hardware_regs libraries that contain definitions of memory-mapped register layout on RP2040. As such they can be used
by low-level or other specialized applications that don't want to use the rest of the SDK libraries and runtime.

]
2.3. SDK Library Structure 13

Raspberry Pi Pico C/C++ SDK

O NoTE

void pio_sm_set_wrap(PIO pio, uint sm, uint bottom, uint top) {} is actually implemented as a static inline function
in https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio.h
directly as shown above.

Using static inline functions is common in SDK header files because such methods are often called with
parameters that have fixed known values at compile time. In such cases, the compiler is often able to fold the code
down to a single register write (or in this case a read, AND with a constant value, OR with a constant value, and a
write) with no function call overhead. This tends to produce much smaller and faster binaries.

2.3.3.1. Hardware Claiming

The hardware layer does provide one small abstraction which is the notion of claiming a piece of hardware. This
minimal system allows registration of peripherals or parts of peripherals (e.g. DMA channels) that are in use, and the
ability to atomically claim free ones at runtime. The common use of this system - in addition to allowing for safe
runtime allocation of resources - provides a better runtime experience for catching software misconfigurations or
accidental use of the same piece hardware by multiple independent libraries that would otherwise be very painful to
debug.

2.3.4. Hardware Structs Library

The hardware_structs library provides a set of C structures which represent the memory mapped layout of RP2040
registers in the system address space. This allows you to replace something like the following (which you'd write in C
with the defines from the lower-level hardware_regs)

*(volatile uint32_t *)(PIOO_BASE + PIO_SM1_SHIFTCTRL_OFFSET) |= PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

with something like this (where pio0 is a pointer to type pio_hw_t at address PIOO_BASE):

pio@->sm[1].shiftctrl |= PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

The structures and associated pointers to memory mapped register blocks hide the complexity and potential error-
prone-ness of dealing with individual memory locations, pointer casts and volatile access. As a bonus, the structs tend
to produce better code with older compilers, as they encourage the reuse of a base pointer with offset load/stores,
instead of producing a 32 bit literal for every register accessed.

The struct headers are named consistently with both the hardware libraries and the hardware_regs register headers. For
example, if you access the hardware pio library’s functionality through hardware/pio.h, the hardware_structs library (a
dependee of hardware_pio) contains a header you can include as hardware/structs/pio.h if you need to access a register
directly, and this itself will pull in hardware/regs/pio.h for register field definitions. The PIO header is a bit lengthy to
include here. hardware/structs/pll.h is a shorter example to give a feel for what these headers actually contain:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h Lines 24 - 53

24 typedef struct {

25 _REG_(PLL_CS_OFFSET) // PLL_CS

26 // Control and Status

27 // 0x80000000 [31] : LOCK (8): PLL is locked

28 // 6x00000100 [8] ! BYPASS (0): Passes the reference clock to the output instead of the
divided VCO

29 // 0x0000003f [5:0] : REFDIV (1): Divides the PLL input reference clock

]
2.3. SDK Library Structure 14

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio.h#L897-L906
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h#L24-L53

Raspberry Pi Pico C/C++ SDK
]

30 io_rw_32 cs;

&l

32 _REG_(PLL_PWR_OFFSET) // PLL_PWR

33 // Controls the PLL power modes

34 // 0x00000020 [5] : VCOPD (1): PLL VCO powerdown

85 // 6x00000008 [3] : POSTDIVPD (1): PLL post divider powerdown
36 // 6x00000004 [2] : DSMPD (1): PLL DSM powerdown

g7 // 6x00000001 [0] D PD (1): PLL powerdown

38 io_rw_32 pwr;

39

40 _REG_(PLL_FBDIV_INT_OFFSET) // PLL_FBDIV_INT

41 // Feedback divisor

42 // 0x00000fff [11:0] : FBDIV_INT (0): see ctrl reg description for constraints
43 io_rw_32 fbdiv_int;

44

45 _REG_(PLL_PRIM_OFFSET) // PLL_PRIM

46 // Controls the PLL post dividers for the primary output
47 // 6x00070000 [18:16] : POSTDIV1 (6x7): divide by 1-7

48 // 0x00007000 [14:12] : POSTDIV2 (6x7): divide by 1-7

49 io_rw_32 prim;

50 } pll_hw_t;

51

52 #define pll_sys_hw ((pll_hw_t *)PLL_SYS_BASE)
53 #define pll_usb_hw ((pll_hw_t *)PLL_USB_BASE)

The structure contains the layout of the hardware registers in a block, and some defines bind that layout to the base
addresses of the instances of that peripheral in the RP2040 global address map.

Additionally, you can use one of the atomic set, clear, or xor address aliases of a piece of hardware to set, clear or toggle
respectively the specified bits in a hardware register (as opposed to having the CPU perform a read/modify/write); e.g:

hw_set_alias(pio@)->sm[1].shiftctrl = PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

Or, equivalently

hw_set_bits(&pio0->sm[1].shiftctrl, PIO_SM1_SHIFTCTRL_AUTOPULL_BITS);

O NoTE

The hardware atomic set/clear/XOR 10 aliases are used extensively in the SDK libraries, to avoid certain classes of
data race when two cores, or an IRQ and foreground code, are accessing registers concurrently.

O NoTE

On RP2040 the atomic register aliases are a native part of the peripheral, not a CPU function, so the system DMA can
also perform atomic set/clear/XOR operation on registers.

2.3.5. Hardware Registers Library

The hardware_regs library is a complete set of include files for all RP2040 registers, autogenerated from the hardware
itself. This is all you need if you want to peek or poke a memory mapped register directly, however higher level libraries
provide more user friendly ways of achieving what you want in C/C++.

For example, here is a snippet from hardware/regs/sio.h:

]
2.3. SDK Library Structure 15

Raspberry Pi Pico C/C++ SDK
]

// Description : Single-cycle IO block

// Provides core-local and inter-core hardware for the two
// processors, with single-cycle access.

)/ S===

#ifndef HARDWARE_REGS_SIO_DEFINED
#define HARDWARE_REGS_SIO_DEFINED

// ========z=z=====z==ssZSsSSSSSSSSSSSSSSSSSSSSSSSSSSSSssSsssSZsss

// Register : SIO_CPUID

// Description : Processor core identifier

// Value is @ when read from processor core 8, and 1 when read
// from processor core 1.

#define SIO_CPUID_OFFSET 0x00000000
#define SIO_CPUID_BITS Oxffffffff
#define SIO_CPUID_RESET "-"
#define SIO_CPUID_MSB 31

#define SIO_CPUID_LSB 0

#define SIO_CPUID_ACCESS "RO"

#endif

These header files are fairly heavily commented (the same information as is present in the datasheet register listings, or
the SVD files). They define the offset of every register, and the layout of the fields in those registers, as well as the
access type of the field, e.g. "RO" for read-only.

@ TIF

The headers in hardware_regs contain only comments and #define statements. This means they can be included from
assembly files (.S, so the C preprocessor can be used), as well as C and C++ files.

2.3.6. TinyUSB Port

In addition to the core SDK libraries, we provide a RP2040 port of TinyUSB as the standard device and host USB support
library within the SDK, and the SDK contains some build infrastructure for easily pulling this into your application.

The tinyusb_device or tinyusb_host libraries within the SDK can be included in your application dependencies in
CMakelists.txt to add device or host support to your application respectively. Additionally, the tinyusb_board library is
available to provide the additional "board support" code often used by TinyUSB demos. See the README in Pico
Examples for more information and example code for setting up a fully functional application.

O IMPORTANT

RP2040 USB hardware supports both Host and Device modes, but the two can not be used concurrently.

2.3.7. Wi-Fi on Pico W

The IP support within the Pico SDK is provided by IwIP. The IwIP raw API is always supported: the full API, including
blocking sockets, may be used under FreeRTOS or FreeRTOS SMP.

There are a number of different library building blocks used within the IP and Wi-Fi support™: pico_lwip for IwlP,
pico_cywd3_driver for the Wi-Fi chip driver, pico_async_context for accessing the non-thread-safe API (IwlIP) in a consistent
way whether polling, using multiple cores, or running FreeRTOS.

]
2.3. SDK Library Structure 16

https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-examples
https://savannah.nongnu.org/projects/lwip/

Raspberry Pi Pico C/C++ SDK

O IMPORTANT

By default libcyw43 is licensed for non-commercial use, but users of Raspberry Pi Pico W, Pico WH, or anyone else
who builds their product around RP2040 and CYW43439, benefit from a free commercial-use licence.

These libraries can be composed individually by advanced users, but in most common cases they are rolled into a few
convenience libraries that you can add to your application’s dependencies in CMakeLists. txt:

® pico_cyw43_arch_lwip_poll - For single-core, traditional polling-style access to IwIP on Pico W.

* pico_cyw43_arch_threadsafe_background - For single or multicore access to IwIP on Pico W, with IwIP callbacks
handled in a low-priority interrupt, so no polling is required.

® pico_cyw43_arch_lwip_sys_freertos - For full access to the IwIP APIs (N0_SYS=0) under FreeRTOS or FreeRTOS
SMP.

For fuller details see the pico_cyw43_arch header file. Many examples of using Wi-Fi and IwIP with the Pico SDK may be
found in the pico-examples repository.

2.3.8. Bluetooth on Pico W

The Bluetooth support within the Pico SDK is provided by BTstack. Documentation for BTstack can be found on
BlueKitchen's website.

O IMPORTANT

In addition to the standard BTstack licensing terms, a supplemental licence which covers commercial use of
BTstack with Raspberry Pi Pico W or Raspberry Pi Pico WH is provided.

See the pico-examples repository for Bluetooth examples including the examples from BTstack.
The Bluetooth support within the SDK is composed of multiple libraries:

The pico_btstack_ble library adds the support needed for Bluetooth Low Energy (BLE), and the pico_btstack_classic library
adds the support needed for Bluetooth Classic. You can link to either library individually, or to both libraries enabling the
dual-mode support provided by BTstack.

The pico_btstack_cyw43 library is required for Bluetooth use. It adds support for the Bluetooth hardware on the Pico W,
and integrates the BTstack run loop concept with the SDK’s pico_async_context library allowing for running Bluetooth
either via polling or in the background, along with multicore and/or FreeRTOS support.

The following additional libraries are optional:
® pico_btstack_sbc_encoder - Adds Bluetooth Sub Band Coding (SBC) encoder support.
® pico_btstack_sbc_decoder - Adds Bluetooth Sub Band Coding (SBC) decoder support.
® pico_btstack_bnep_lwip - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using LwIP.

® pico_btstack_bnep_lwip_sys_freertos - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using
LwIP with FreeRTOS in NO_SYS=0 mode.

To use BTstack you must add pico_btstack_cyw43 and one or both of pico_btsack_ble and pico_sbtstack_classic to your
application dependencies in your CMakeLists.txt. Additionally, you need to provide a btstack_config.h file in your source
tree and add its location to your include path. For more details, see BlueKitchen’s documentation on how to configure
BTstack and the relevant Bluetooth example code in the pico-examples repository.

The CMake function pico_btstack_make_gatt_header can be used to run the BTstack compile_gatt tool to make a GATT
header file from a BTstack GATT file.

]
2.3. SDK Library Structure 17

https://github.com/georgerobotics/cyw43-driver/blob/195dfcc10bb6f379e3dea45147590db2203d3c7b/LICENSE.RP
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch.h
https://github.com/raspberrypi/pico-examples/blob/master/README.md
https://github.com/bluekitchen/btstack/blob/master/README.md
https://bluekitchen-gmbh.com/btstack/
https://bluekitchen-gmbh.com/btstack/
https://github.com/bluekitchen/btstack/blob/master/LICENSE
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/LICENSE.RP
https://github.com/raspberrypi/pico-examples/blob/master/README.md
https://bluekitchen-gmbh.com/btstack/#examples/examples/
https://bluekitchen-gmbh.com/btstack/develop/#how_to/
https://bluekitchen-gmbh.com/btstack/develop/#how_to/
https://github.com/raspberrypi/pico-examples/blob/master/README.md

Raspberry Pi Pico C/C++ SDK

Table 1. Top-level
directories

2.4. Directory Structure

We have discussed libraries such as pico_stdlib and hardware_gpio above. Imagine you wanted to add some code using
RP2040’s DMA controller to the hello_world example in pico-examples. To do this you need to add a dependency on
another library, hardware_dma, which is not included by default by pico_stdlib (unlike, say, hardware_uart).

You would change your CMakelists.txt to list both pico_stdlib and hardware_dma as dependencies of the hello_world target
(executable). (Note the line breaks are not required)

target_link_libraries(hello_world
pico_stdlib
hardware_dma

And in your source code you would include the DMA hardware library header as such:
#include "hardware/dma.h"

Trying to include this header without listing hardware_dma as a dependency will fail, and this is due to how SDK files are
organised into logical functional units on disk, to make it easier to add functionality in the future.

As an aside, this correspondence of hardware_dma — hardware/dma.h is the convention for all toplevel SDK library headers.
The library is called foo_bar and the associated header is foo/bar.h. Some functions may be provided inline in the
headers, others may be compiled and linked from additional .c files belonging to the library. Both of these require the
relevant hardware_ library to be listed as a dependency, either directly or through some higher-level bundle like
pico_stdlib.

O NoTE

Some libraries have additional headers which are located in foo/bar/other.h

You may want to actually find the files in question (although most IDEs will do this for you). The on disk files are actually
split into multiple top-level directories. This is described in the next section.

2.4.1. Locations of Files
Whilst you may be focused on building a binary to run specifically on Raspberry Pi Pico, which uses a RP2040, the SDK
is structured in a more general way. This is for two reasons:

1. To support other future chips in the RP2 family

2. To support testing of your code off device (this is host mode)

The latter is useful for writing and running unit tests, but also as you develop your software, for example your debugging
code or work in progress software might actually be too big or use too much RAM to fit on the device, and much of the
software complexity may be non-hardware-specific.

The code is thus split into top level directories as follows:

Path Description

src/rp2049/ This contains the hardware_regs and hardware_structs libraries mentioned earlier, which are

specific to RP2040.

2.4. Directory Structure 18

Raspberry Pi Pico C/C++ SDK

Path Description

src/rp2_common/ This contains the hardware_ library implementations for individual hardware components,
and pico_ libraries or library implementations that are closely tied to RP2040 hardware.
This is separate from /src/rp2040 as there may be future revisions of RP2040, or other
chips in the RP2 family, which can use a common SDK and API whilst potentially having
subtly different register definitions.

src/common/ This is code that is common to all builds. This is generally headers providing hardware
abstractions for functionality which are simulated in host mode, along with a lot of the
pico_ library implementations which, to the extent they use hardware, do so only through
the hardware_ abstractions.

src/host/ This is a basic set of replacement SDK library implementations sufficient to get simple
Raspberry Pi Pico applications running on your computer (Raspberry Pi OS, Linux,
macOS or Windows using Cygwin or Windows Subsystem for Linux). This is not
intended to be a fully functional simulator, however it is possible to inject additional
implementations of libraries to provide more complete functionality.

There is a CMake variable PIC0_PLATFORM that controls the environment you are building for:

When doing a regular RP2040 build (PIC0_PLATFORM=rp2040, the default), you get code from common, rp2_common and rp2040;
when doing a host build (PIC0_PLATFROM=host), you get code from common and host.

Within each top-level directory, the libraries have the following structure (reading foo_bar as something like hardware_uvart
or pico_time)

top-level_dir/

top-level_dir/foo_bar/include/foo/bar.h # header file
top-level_dir/foo_bar/CMakelLists.txt # build configuration
top-level_dir/foo_bar/bar.c # source file(s)

As a concrete example, we can list the hardware_uart directory under pico-sdk/rp2_common (you may also recall the
hardware_gpio library we looked at earlier):

hardware_uart
—— CMakelLists.txt
F—— include

| L—— hardware

| L— uvart.h
—— uart.c

vart.h contains function declarations and preprocessor defines for the hardware_uvart library, as well as some inline
functions that are expected to be particularly amenable to constant folding by the compiler. vart.c contains the
implementations of more complex functions, such as calculating and setting up the divisors for a given UART baud rate.

O NoOTE

The directory top-level_dir/foo_bar/include is added as an include directory to the INTERFACE library foo_bar, which is
what allows you to include "foo/bar.h" in your application

2.5. Conventions for Library Functions

This section covers some common patterns you will see throughout the SDK libraries, such as conventions for function

2.5. Conventions for Library Functions 19

Raspberry Pi Pico C/C++ SDK
]

Table 2. SDK Suffixes
for (non-)blocking
functions and
timeouts.

names, how errors are reported, and the approach used to efficiently configure hardware with many register fields
without having unreadable numbers of function arguments.

2.5.1. Function Naming Conventions

SDK functions follow a common naming convention for consistency and to avoid name conflicts. Some names are
quite long, but that is deliberate to be as specific as possible about functionality, and of course because the SDK API is
a C API and does not support function overloading.

2.5.1.1. Name prefix

Functions are prefixed by the library/functional area they belong to; e.g. public functions in the hardware_dma library are
prefixed with dma_. Sometime the prefix refers to a sub group of library functionality (e.g. channel_config_)

2.5.1.2. Verb

A verb typically follows the prefix specifying that action performed by the function. set_ and get_ (or is_ for booleans)
are probably the most common and should always be present; i.e. a hypothetical method would be
oven_get_temperature() and food_add_salt(), rather than oven_temperature() and food_salt().

2.5.1.3. Suffixes

2.5.1.3.1. Blocking/Non-Blocking Functions and Timeouts
Suffix Param Description
(none) The method is non-blocking, i.e. it does not wait on any external

condition that could potentially take a long time.

_blocking The method is blocking, and may potentially block indefinitely
until some specific condition is met.

_blocking_until absolute_time_t until The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) if the until time is reached.

_timeout_ms uint32_t timeout_ms The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) after the specified number of milliseconds

_timeout_us uint64_t timeout_us The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) after the specified number of microseconds

2.5.2. Return Codes and Error Handling

As mentioned earlier, there is a decision to be made as to whether/which functions return error codes that can be
handled by the caller, and indeed whether the caller is likely to actually do something in response in an embedded
environment. Also note that very often return codes are there to handle parameter checking, e.g. when asked to do
something with the 27th DMA channel (when there are actually only 12).

In many cases checking for obviously invalid (likely program bug) parameters in (often inline) functions is prohibitively

]
2.5. Conventions for Library Functions 20

Raspberry Pi Pico C/C++ SDK
]

expensive in speed and code size terms, and therefore we need to be able to configure it on/off, which precludes return
codes being returned for these exceptional cases.

The SDK follows two strategies:

1. Methods that can legitimately fail at runtime due to runtime conditions e.g. timeouts, dynamically allocated
resource, can return a status which is either a bool indicating success or not, or an integer return code from the
PICO_ERROR_ family; non-error returns are >= 0.

2. Other items like invalid parameters, or failure to allocate resources which are deemed program bugs (e.g. two
libraries trying to use the same statically assigned piece of hardware) do not affect a return code (usually the
functions return void) and must cause some sort of exceptional event.

As of right now the exceptional event is a C assert, so these checks are always disabled in release builds by
default. Additionally most of the calls to assert are disabled by default for code/size performance (even in debug
builds); You can set PARAM_ASSERTIONS_ENABLE_ALL=1 or PARAM_ASSERTIONS_DISABLE_ALL=1 in your build to change the
default across the entire SDK, or say PARAM_ASSERTIONS_ENABLED_I2C=0/1 to explicitly specify the behaviour for the
hardware_i2c module

In the future we expect to support calling a custom function to throw an exception in C++ or other environments
where stack unwinding is possible.

3. Obviously sometimes the calling code whether it be user code or another higher level function, may not want the
called function to assert on bad input, in which case it is the responsibility of the caller to check the validity (there
are a good number of API functions provided that help with this) of their arguments, and the caller can then choose
to provide a more flexible runtime error experience.

4. Finally some code may choose to "panic” directly if it detects an invalid state. A "panic” involves writing a message
to standard output and then halting (by executing a breakpoint instruction). Panicking is a good response when it
is undesirable to even attempt to continue given the current situation.

2.5.3. Use of Inline Functions

SDK libraries often contain a mixture of static inline functions in header files, and non-static functions in C source files.
In particular, the hardware_ libraries are likely to contain a higher proportion of inline function definitions in their headers.
This is done for speed and code size.

The code space needed to setup parameters for a regular call to a small function in another compilation unit can be
substantially larger than the function implementation. Compilers have their own metrics to decide when to inline
function implementations at their call sites, but the use of static inline definitions gives the compiler more freedom to
do this.

One reason this is particularly effective in the context of hardware register access is that these functions often:
1. Have relatively many parameters, which
2. Are immediately shifted and masked to combine with some register value, and
3. Are often constants known at compile time

So if the implementation of a hardware access function is inlined, the compiler can propagate the constant parameters
through whatever bit manipulation and arithmetic that function may do, collapsing a complex function down to "please
write this constant value to this constant address". Again, we are not forcing the compiler to do this, but the SDK
consistently tries to give it freedom to do so.

The result is that there is generally no overhead using the lower-level hardware_ functions as compared with using
preprocessor macros with the hardware_regs definitions, and they tend to be much less error-prone.

]
2.5. Conventions for Library Functions 21

Raspberry Pi Pico C/C++ SDK
]

2.5.4. Builder Pattern for Hardware Configuration APIs

The SDK uses a builder pattern for the more complex configurations, which provides the following benefits:

1. Readability of code (avoid "death by parameters" where a configuration function takes a dozen integers and
booleans)

2. Tiny runtime code (thanks to the compiler)
3. Less brittle (the addition of another item to a hardware configuration will not break existing code)

Take the following hypothetical code example to (quite extensively) configure a DMA channel:

int dma_channel = 3;

dma_channel_config config = dma_get_default_channel_config(dma_channel);
channel_config_set_read_increment(&config, true);
channel_config_set_write_increment(&config, true);
channel_config_set_dreq(&config, DREQ_SPIO_RX);
channel_config_set_transfer_data_size(&config, DMA_SIZE_8);
dma_set_config(dma_channel, &config, false);

The value of dma_channel is known at compile time, so the compiler can replace dma_channel with 3 when generating code
(constant folding). The dma_ methods are static inline methods (from https://github.com/raspberrypi/pico-sdk/blob/
master/src/rp2_common/hardware_dma/include/hardware/dma.h) meaning the implementations can be folded into
your code by the compiler and, consequently, your constant parameters (like DREQ_SP10_RX) are propagated though this
local copy of the function implementation. The resulting code is usually smaller, and certainly faster, than the register
shuffling caused by setting up a function call.

The net effect is that the compiler actually reduces all of the above to the following code:

Effective code produced by the C compiler for the DMA configuration

*(volatile uint32_t *)(DMA_BASE + DMA_CH3_AL1_CTRL_OFFSET) = ©x00089831;

It may seem counterintuitive that building up the configuration by passing a struct around, and committing the final
result to the 10 register, would be so much more compact than a series of direct register modifications using register
field accessors. This is because the compiler is customarily forbidden from eliminating 10 accesses (illustrated here
with a volatile keyword), with good reason. Consequently it's easy to unwittingly generate code that repeatedly puts a
value into a register and pulls it back out again, changing a few bits at a time, when we only care about the final value of
the register. The configuration pattern shown here avoids this common pitfall.

O NOTE

The SDK code is designed to make builder patterns efficient in both Release and Debug builds. Additionally, even if
not all values are known constant at compile time, the compiler can still produce the most efficient code possible
based on the values that are known.

2.6. Customisation and Configuration Using Preprocessor
variables

The SDK allows use of compile time definitions to customize the behavior/capabilities of libraries, and to specify
settings (e.g. physical pins) that are unlikely to be changed at runtime This allows for much smaller more efficient code,
and avoids additional runtime overheads and the inclusion of code for configurations you might choose at runtime even
though you actually don't (e.g. support PWM audio when you are only using 12S)!

2.6. Customisation and Configuration Using Preprocessor variables 22

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dma/include/hardware/dma.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dma/include/hardware/dma.h

Raspberry Pi Pico C/C++ SDK
]

Remember that because of the use of INTERFACE libraries, all the libraries your application(s) depend on are built from
source for each application in your build, so you can even build multiple variants of the same application with different
baked in behaviors.

Appendix B has a comprehensive list of the available preprocessor defines, what they do, and what their default values
are.

Preprocessor variables may be specified in a number of ways, described in the following sections.

O NoOTE

Whether compile time configuration or runtime configuration or both is supported/required is dependent on the
particular library itself. The general philosophy however, is to allow sensible default behaviour without the user
specifying any settings (beyond those provided by the board configuration).

2.6.1. Preprocessor Variables via Board Configuration File

Many of the common configuration settings are actually related to the particular RP2040 board being used, and include
default pin settings for various SDK libraries. The board being used is specified via the P1c0_BOARD CMake variable which
may be specified on the CMake command line or in the environment. The default PIC0_BOARD if not specified is pico.

The board configuration provides a header file which specifies defaults if not otherwise specified; for example
https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h specifies

#ifndef PICO_DEFAULT_LED_PIN
#define PICO_DEFAULT_LED_PIN 25
#endif

The header my_board_name.h is included by all other SDK headers as a result of setting PIC0_B0ARD=my_board_name. You may
wish to specify your own board configuration in which case you can set PICO_BOARD_HEADER_DIRS in the environment
or CMake to a semicolon separated list of paths to search for my_board_name.h.

2.6.2. Preprocessor Variables Per Binary or Library via CMake

We could modify the https://github.com/raspberrypi/pico-examples/blob/master/hello_world/CMakeLists.txt with
target_compile_definitions to specify an alternate set of UART pins to use.

Modified hello_world CMakeLists.txt specifying different UART pins

add_executable(hello_world
hello_world.c

SPECIFY two preprocessor definitions for the target hello_world
target_compile_definitions(hello_world PRIVATE
PICO_DEFAULT_UART_TX_PIN=16
PICO_DEFAULT_UART_RX_PIN=17

Pull in our pico_stdlib which aggregates commonly used features
target_link_libraries(hello_world pico_stdlib)

create map/bin/hex/uf2 file etc.
pico_add_extra_outputs(hello_world)

]
2.6. Customisation and Configuration Using Preprocessor variables 23

https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h
https://github.com/raspberrypi/pico-examples/blob/master/hello_world/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK

The target_compile_definitions specifies preprocessor definitions that will be passed to the compiler for every source file
in the target hello_world (which as mentioned before includes all of the sources for all dependent INTERFACE libraries).
PRIVATE is required by CMake to specify the scope for the compile definitions. Note that all preprocessor definitions used
by the SDK have a P1C0_ prefix.

2.7. SDK Runtime

For those coming from non-embedded programming, or from other devices, this section will give you an idea of how
various C/C++ language level concepts are handled within the SDK

2.7.1. Standard Input/Output (stdio) Support

The SDK runtime packages a lightweight printf library by Marco Paland, linked as pico_printf. It also contains
infrastructure for routing stdout and stdin to various hardware interfaces, which is documented under pico_stdio:

* A UART interface specified by a board configuration header. The default for Raspberry Pi Pico is 115200 baud on
GPIOO0 (TX) and GPIO1 (RX)

® A USB CDC ACM virtual serial port, using TinyUSB’s CDC support. The virtual serial device can be accessed
through RP2040’s dedicated USB hardware interface, in Device mode.

® (Experimental) minimal semihosting support to direct stdout to an external debug host connected via the Serial
Wire Debug link on RP2040

These can be accessed using standard calls like printf, puts, getchar, found in the standard <stdio.h> header. By default,
stdout converts bare linefeed characters to carriage return plus linefeed, for better display in a terminal emulator. This
can be disabled at runtime, at build time, or the CR-LF support can be completely removed.

stdout is broadcast to all interfaces that are enabled, and stdin is collected from all interfaces which are enabled and
support input. Since some of the interfaces, particularly USB, have heavy runtime and binary size cost, only the UART
interface is included by default. You can add/remove interfaces for a given program at build time with e.g.

pico_enable_stdio_usb(target_name 1)

2.7.2. Floating-point Support

The SDK provides a highly optimized single and double precision floating point implementation. In addition to being
fast, many of the functions are actually implemented using support provided in the RP2040 bootrom. This means the
interface from your code to the ROM floating point library has very minimal impact on your program size, certainly using
dramatically less flash storage than including the standard floating point routines shipped with your compiler.

The physical ROM storage on RP2040 has single-cycle access (with a dedicated arbiter on the RP2040 busfabric), and
accessing code stored here does not put pressure on the flash cache or take up space in memory, so not only are the
routines fast, the rest of your code will run faster due them being resident in ROM.

This implementation is used by default as it is the best choice in the majority of cases, however it is also possible to
switch to using the regular compiler soft floating point support.

2.7.2.1. Functions

The SDK provides implementations for all the standard functions from math.h. Additional functions can be found in
pico/float.h and pico/double.h.

2.7. SDK Runtime 24

Raspberry Pi Pico C/C++ SDK
]

Table 3. SDK
implementation vs
GCC 9 implementation
for ARM AEABI
floating point
functions (these
unusually named
functions provide the
support for basic
operations on float
and double types)

2.7.2.2. Speed/Tradeoffs

The overall goal for the bootrom floating-point routines is to achieve good performance within a small footprint, the
emphasis being more on improved performance for the basic operations (add, subtract, multiply, divide and square root,
and all conversion functions), and more on reduced footprint for the scientific functions (trigonometric functions,
logarithms and exponentials).

The IEEE single- and double-precision data formats are used throughout, but in the interests of reducing code size, input
denormals are treated as zero and output denormals are flushed to zero, and output NaNs are rendered as infinities.
Only the round-to-nearest, even-on-tie rounding mode is supported. Traps are not supported. Whether input NaNs are
treated as infinities or propagated is configurable.

The five basic operations (add, subtract, multiply, divide, sqrt) return results that are always correctly rounded (round-to-
nearest).

The scientific functions always return results within 1 ULP (unit in last place) of the exact result. In many cases results
are better.

The scientific functions are calculated using internal fixed-point representations so accuracy (as measured in ULP error
rather than in absolute terms) is poorer in situations where converting the result back to floating point entails a large
normalising shift. This occurs, for example, when calculating the sine of a value near a multiple of pi, the cosine of a
value near an odd multiple of pi/2, or the logarithm of a value near 1. Accuracy of the tangent function is also poorer
when the result is very large. Although covering these cases is possible, it would add considerably to the code footprint,
and there are few types of program where accuracy in these situations is essential.

The following table shows the results from a benchmark

O NoOTE

Whilst the SDK floating point support makes use of the routines in the RP2040 bootrom, it hides some of the
limitations of the raw ROM functions (e.g. limited sin/cos range), in order to be largely indistinguishable from the
compiler-provided functionality. Certain smaller functions have also been re-implemented for even more speed
outside of the limited bootrom space.

Function ROM/SDK (ps) GCC 9 (ps) Performance Ratio
__aeabi_fadd 72.4 99.8 138%
__aeabi_fsub 86.7 133.6 154%
__aeabi_frsub 89.8 140.6 157%
__aeabi_fmul 61.5 145 236%
__aeabi_fdiv 74.7 437.5 586%
__aeabi_fcmplt 39 61.1 157%
__aeabi_fcmple 40.5 61.1 151%
__aeabi_fcmpgt 40.5 61.2 151%
__aeabi_fcmpge 41 61.2 149%
__aeabi_fcmpeq 40 41.5 104%
__aeabi_dadd 99.4 142.5 143%
__aeabi_dsub 114.2 182 159%
__aeabi_drsub 108 181.2 168%
__aeabi_dmul 168.2 338 201%
__aeabi_ddiv 197.1 412.2 209%

2.7. SDK Runtime

25

Raspberry Pi Pico C/C++ SDK
]

__aeabi_dcmplt 53 88.3 167%
__aeabi_dcmple 54.6 88.3 162%
__aeabi_dcmpgt 54.4 86.6 159%
__aeabi_dcmpge 55 86.6 157%
__aeabi_dcmpeq 54 64.3 119%
__aeabi_f2iz 17 24.5 144%
__aeabi_f2uiz 42.5 106.5 251%
__aeabi_f2lz 63.1 1240.5 1966%
__aeabi_f2ulz 46.1 1157 2510%
__aeabi_i2f 43.5 63 145%
__aeabi_ui2f 41.5 55.8 134%
__aeabi_l2f 75.2 643.3 855%
__aeabi_ul2f 71.4 531.5 744%
__aeabi_d2iz 30.6 441 144%
__aeabi_d2uiz 75.7 159.1 210%
__aeabi_d2Iz 81.2 1267.8 1561%
__aeabi_d2ulz 65.2 1148.3 1761%
__aeabi_i2d 44.4 61.9 139%
__aeabi_ui2d 43.4 51.3 118%
__aeabi_l2d 104.2 559.3 537%
__aeabi_ul2d 102.2 458.1 448%
__aeabi_f2d 20 31 155%
__aeabi_d2f 36.4 66 181%
2.7.2.3. Configuration and Alternate Implementations
There are three different floating point implementations provided

Name Description

default The default; equivalent to pico

pico Use the fast/compact SDK/bootrom implementations

compiler Use the standard compiler provided soft floating point implementations
none Map all functions to a runtime assertion. You can use this when you know you don't

want any floating point support to make sure it isn't accidentally pulled in by some
library.

These settings can be set independently for both "float" and "double":

For "float" you can call pico_set_float_implementation(TARGET NAME) in your CMakelLists.txt to choose a specific
implementation for a particular target, or set the CMake variable PICO_DEFAULT_FLOAT_IMPL to pico_float_NAME to set the
default.

]
2.7. SDK Runtime 26

Raspberry Pi Pico C/C++ SDK
]

Figure 1. 32-bit divides
by divider size using
GCC library (blue), or
the SDK library (red)
with the RP2040
hardware divider.

For "double" you can call pico_set_double_implementation(TARGET NAME) in your CMakelists.txt to choose a specific
implementation for a particular target, or set the CMake variable PICO_DEFAULT_DOUBLE_IMPL to pico_double_NAME to set the
default.

@ TIF

The pico floating point library adds very little to your binary size, however it must include implementations for any
used functions that are not present in V1 of the bootrom, which is present on early Raspberry Pi Pico boards. If you
know that you are only using RP2040s with V2 of the bootrom, then you can specify defines
PICO_FLOAT_SUPPORT_ROM_V1=0 and PICO_DOUBLE_SUPPORT_ROM_V1=0 so the extra code will not be included. Any use of those
functions on a RP2040 with a V1 bootrom will cause a panic at runtime. See the RP2040 Datasheet for more
specific details of the bootrom functions.

2.7.2.3.1. NaN Propagation

The SDK implementation by default treats input NaNs as infinites. If you require propagation of NaN inputs to outputs
and NaN outputs for domain errors, then you can set the compile definitions PICO_FLOAT_PROPAGATE_NANS and
PICO_DOUBLE_PROPAGATE_NANS to 1, at the cost of a small runtime overhead.

2.7.3. Hardware Divider

The SDK includes optimized 32- and 64-bit division functions accelerated by the RP2040 hardware divider, which are
seamlessly integrated with the C / and % operators. The SDK also supplies a high level APl which includes combined
quotient and remainder functions for 32- and 64-bit, also accelerated by the hardware divider.

See Figure 1 and Figure 2 for 32-bit and 64-bit integer divider comparison.

1 ———
2 | ———— = GCC
3 — i
4 | —— Pico
5 | ————
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
I I I I |
0 50 100 150 200 250

]
2.7. SDK Runtime 27

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

Figure 2. 64-bit divides
by divider size using
GCC library (blue), or
the SDK library (red)
with the RP2040
hardware divider.

— GCC
= Pico

S3coNonawna

0 200 400 600 800 1000 1200

2.8. Multi-core support

Multi-core support should be familiar to those used to programming with threads in other environments. The second
core is just treated as a second thread within your application; initially the second core (core1 as it is usually referred to;
the main application thread runs on cored) is halted, however you can start it executing some function in parallel from
your main application thread.

Core 1 (the second core) is started by calling multicore_launch_corel(some_function_pointer); on core 0, which wakes the
core from its low-power sleep state and provides it with its entry point —some function you have provided which
hopefully has a descriptive name like void corel_main() { }. This function, as well as others such as pushing and
popping data through the inter-core mailbox FIFOs, is listed under pico_multicore.

Care should be taken with calling C library functions from both cores simultaneously as they are generally not designed
to be thread safe. You can use the mutex_ API provided by the SDK in the pico_sync library (https://github.com/
raspberrypi/pico-sdk/blob/master/src/common/pico_sync/include/pico/mutex.h) from within your own code.

O NOTE

That the SDK version of printf is always safe to call from both cores. malloc, calloc and free are additionally wrapped
to make it thread safe when you include the pico_multicore as a convenience for C++ programming, where some
object allocations may not be obvious.

2.9. Using C++

The SDK has a C style API, however the SDK headers may be safely included from C++ code, and the functions called
(they are declared with C linkage).

C++ files are integrated into SDK projects in the same way as C files: listing them in your CMakeLists.txt file under either
the add_executable() entry, or a separate target_sources() entry to append them to your target.

2.8. Multi-core support 28

https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_sync/include/pico/mutex.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_sync/include/pico/mutex.h

Raspberry Pi Pico C/C++ SDK

To save space, exception handling is disabled by default; this can be overridden with the CMake environment variable
PICO_CXX_ENABLE_EXCEPTIONS=1. There are a handful of other C++ related PIC0_CXX vars listed in Appendix C.

2.10. Next Steps

This has been quite a deep dive. If you've somehow made it through this chapter without building any software, now
would be a perfect time to divert to the Getting started with Raspberry Pi Pico book, which has detailed instructions on
connecting to your RP2040 board and loading an application built with the SDK.

Chapter 3 gives some background on RP2040’s unique Programmable I/0 subsystem, and walks through building some
applications which use PIO to talk to external hardware.

Chapter 4 is a comprehensive listing of the SDK APIs. The APIs are listed according to groups of related functionality
(e.g. low-level hardware access).

2.10. Next Steps

29

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

Raspberry Pi Pico C/C++ SDK

Chapter 3. Using programmable I/O
(PIO)

3.1. What is Programmable 1/0 (P10)?

Programmable 1/0 (PIO) is a new piece of hardware developed for RP2040. It allows you to create new types of (or
additional) hardware interfaces on your RP2040-based device. If you've looked at fixed peripherals on a microcontroller,
and thought "l want to add 4 more UARTSs", or "I'd like to output DPI video", or even "l need to communicate with this
cursed serial device | found on AliExpress, but no machine has hardware support’, then you will have fun with this
chapter.

P10 hardware is described extensively in chapter 3 of the RP2040 Datasheet. This is a companion to that text, focussing
on how, when and why to use PIO in your software. To start, we're going to spend a while discussing why 1/0 is hard,
what the current options are, and what PIO does differently, before diving into some software tutorials. We will also try
to illuminate some of the more important parts of the hardware along the way, but will defer to the datasheet for full
explanations.

@ TP

You can skip to the first software tutorial if you'd prefer to dive straight in.

3.1.1. Background

Interfacing with other digital hardware components is hard. It often happens at very high frequencies (due to amounts
of data that need to be transferred), and has very exact timing requirements.

3.1.2. 1/0 Using dedicated hardware on your PC

Traditionally, on your desktop or laptop computer, you have one option for hardware interfacing. Your computer has
high speed USB ports, HDMI outputs, PCle slots, SATA drive controllers etc. to take care of the tricky and time sensitive
business of sending and receiving ones and zeros, and responding with minimal latency or interruption to the graphics
card, hard drive etc. on the other end of the hardware interface.

The custom hardware components take care of specific tasks that the more general multi-tasking CPU is not designed
for. The operating system drivers perform higher level management of what the hardware components do, and
coordinate data transfers via DMA to/from memory from the controller and receive IRQs when high level tasks need
attention. These interfaces are purpose-built, and if you have them, you should use them.

3.1.3. 1/0 Using dedicated hardware on your Raspberry Pi or microcontroller

Not so common on PCs: your Raspberry Pi or microcontroller is likely to have dedicated hardware on chip for managing
UART, 12C, SPI, PWM, 12S, CAN bus and more over general purpose I/0 pins (GPIOs). Like USB controllers (also found on
some microcontrollers, including the RP2040 on Raspberry Pi Pico), 12C and SPI are general purpose buses which
connect to a wide variety of external hardware, using the same piece of on-chip hardware. This includes sensors,
external flash, EEPROM and SRAM memories, GPIO expanders, and more, all of them widely and cheaply available. Even
HDMI uses 12C to communicate video timings between Source and Sink, and there is probably a microcontroller
embedded in your TV to handle this.

]
3.1. What is Programmable 1/0 (PIO)? 30

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

Table 4. Types of
hardware

These protocols are simpler to integrate into very low-cost devices (i.e. not the host), due to their relative simplicity and
modest speed. This is important for chips with mostly analogue or high-power circuitry: the silicon fabrication
techniques used for these chips do not lend themselves to high speed or gate count, so if your switchmode power
supply controller has some serial configuration interface, it is likely to be something like I12C. The number of traces
routed on the circuit board, the number of pins required on the device package, and the PCB technology required to
maintain signal integrity are also factors in the choice of these protocols. A microcontroller needs to communicate with
these devices to be part of a larger embedded system.

This is all very well, but the area taken up by these individual serial peripherals, and the associated cost, often leaves
you with a limited menu. You may end up paying for a bunch of stuff you don't need, and find yourself without enough of
what you really want. Of course you are out of luck if your microcontroller does not have dedicated hardware for the
type of hardware device you want to attach (although in some cases you may be able to bridge over USB, 12C or SPI at
the cost of buying external hardware).

3.1.4.1/0 Using software control of GPIOs ("bit-banging")

The third option on your Raspberry Pi or microcontroller — any system with GPIOs which the processor(s) can access
easily —is to use the CPU to wiggle (and listen to) the GPIOs at dizzyingly high speeds, and hope to do so with
sufficiently correct timing that the external hardware still understands the signals.

As a bit of background it is worth thinking about types of hardware that you might want to interface, and the
approximate signalling speeds involved:

Interface Speed Interface

1-10Hz Push buttons, indicator LEDs
300Hz HDMI CEC

10-100kHz Temperature sensors (DHT11), one-wire serial
<100kHz 12C Standard mode
22-100+kHz PCM audio

300+kHz PWM audio

400-1200kHz WS2812 LED string
10-3000kHz UART serial

12MHz USB Full Speed

1-100MHz SPI

20-300MHz DPI/VGA video

480MHz USB High Speed
10-4000MHz Ethernet LAN

12-4000MHz SD card

250-20000MHz HDMI/DVI video

"Bit-Banging" (i.e. using the processor to hammer out the protocol via the GPIOs) is very hard. The processor isn't really
designed for this. It has other work to do... for slower protocols you might be able to use an IRQ to wake up the
processor from what it was doing fast enough (though latency here is a concern) to send the next bit(s). Indeed back in
the early days of PC sound it was not uncommon to set a hardware timer interrupt at 11kHz and write out one 8-bit PCM
sample every interrupt for some rather primitive sounding audio!

Doing that on a PC nowadays is laughed at, even though they are many order of magnitudes faster than they were back
then. As processors have become faster in terms of overwhelming number-crunching brute force, the layers of software
and hardware between the processor and the outside world have also grown in number and size. In response to the

]
3.1. What is Programmable 1/0 (PIO)? 31

Raspberry Pi Pico C/C++ SDK
]

growing distance between processors and memory, PC-class processors keep many hundreds of instructions in-flight
on a single core at once, which has drawbacks when trying to switch rapidly between hard real time tasks. However,
IRQ-based bitbanging can be an effective strategy on simpler embedded systems.

Above certain speeds — say a factor of 1000 below the processor clock speed — IRQs become impractical, in part due to
the timing uncertainty of actually entering an interrupt handler. The alternative when "bit-banging” is to sit the processor
in a carefully timed loop, often painstakingly written in assembly, trying to make sure the GPIO reading and writing
happens on the exact cycle required. This is really really hard work if indeed possible at all. Many heroic hours and likely
thousands of GitHub repositories are dedicated to the task of doing such things (a large proportion of them for LED
strings).

Additionally of course, your processor is now busy doing the "bit-banging”, and cannot be used for other tasks. If your
processor is interrupted even for a few microseconds to attend to one of the hard peripherals it is also responsible for,
this can be fatal to the timing of any bit-banged protocol. The greater the ratio between protocol speed and processor
speed, the more cycles your processor will spend uselessly idling in between GPIO accesses. Whilst it is eminently
possible to drive a 115200 baud UART output using only software, this has a cost of >10,000 cycles per byte if the
processor is running at 133MHz, which may be poor investment of those cycles.

Whilst dealing with something like an LED string is possible using "bit-banging", once your hardware protocol gets faster
to the point that it is of similar order of magnitude to your system clock speed, there is really not much you can hope to
do. The main case where software GPIO access is the best choice is LEDs and push buttons.

Therefore you're back to custom hardware for the protocols you know up front you are going to want (or more
accurately, the chip designer thinks you might need).

3.1.5. Programmable I/0 Hardware using FPGAs and CPLDs

A field-programmable gate array (FPGA), or its smaller cousin, the complex programmable logic device (CPLD), is in
many ways the perfect solution for tailor-made 1/0 requirements, whether that entails an unusual type or unusual
mixture of interfaces. FPGAs are chips with a configurable logic fabric — effectively a sea of gates and flipflops, some
other special digital function blocks, and a routing fabric to connect them — which offer the same level of design
flexibility available to chip designers. This brings with it all the advantages of dedicated 1/0 hardware:

* Absolute precision of protocol timing (within limitations of your clock source)
® Capable of very high 1/0 throughput
* Offload simple, repetitive calculations that are part of the I/0 standard (checksums)

® Present a simpler interface to host software; abstract away details of the protocol, and handle these details
internally.

The main drawback of FPGAs in embedded systems is their cost. They also present a very unfamiliar programming
model to those well-versed in embedded software: you are not programming at all, but rather designing digital
hardware. One you have your FPGA you will still need some other processing element in your system to run control
software, unless you are using an FPGA expensive enough to either fit a soft CPU core, or contain a hardened CPU core
alongside the FPGA fabric.

eFPGAs (embedded FPGAs) are available in some microcontrollers: a slice of FPGA logic fabric integrated into a more
conventional microcontroller, usually with access to some GPIOs, and accessible over the system bus. These are
attractive from a system integration point of view, but have a significant area overhead compared with the usual serial
peripherals found on a microcontroller, so either increase the cost and power dissipation, or are very limited in size. The
issue of programming complexity still remains in eFPGA-equipped systems.

3.1.6. Programmable 1/0 Hardware using PIO

The PIO subsystem on RP2040 allows you to write small, simple programs for what are called PIO state machines, of
which RP2040 has eight split across two PIO instances. A state machine is responsible for setting and reading one or
more GPIOs, buffering data to or from the processor (or RP2040’s ultra-fast DMA subsystem), and notifying the

]
3.1. What is Programmable 1/0 (PIO)? 32

Raspberry Pi Pico C/C++ SDK
]

processor, via IRQ or polling, when data or attention is needed.

These programs operate with cycle accuracy at up to system clock speed (or the program clocks can be divided down
to run at slower speeds for less frisky protocols).

P10 state machines are much more compact than the general-purpose Cortex-M0+ processors on RP2040. In fact, they
are similar in size (and therefore cost) to a standard SPI peripheral, such as the PL022 SPI also found on RP2040,
because much of their area is spent on components which are common to all serial peripherals, like FIFOs, shift
registers and clock dividers. The instruction set is small and regular, so not much silicon is spent on decoding the
instructions. There is no need to feel guilty about dedicating a state machine solely to a single I/0 task, since you have 8
of them!

In spite of this, a PIO state machine gets a lot more done in one cycle than a Cortex-M0+ when it comes to 1/0: for
example, sampling a GPIO value, toggling a clock signal and pushing to a FIFO all in one cycle, every cycle. The trade-off
is that a PIO state machine is not remotely capable of running general purpose software. As we shall see though,
programming a PIO state machine is quite familiar for anyone who has written assembly code before, and the small
instruction set should be fairly quick to pick up for those who haven't.

For simple hardware protocols - such as PWM or duplex SPI - a single PIO state machine can handle the task of
implementing the hardware interface all on its own. For more involved protocols such as SDIO or DPI video you may end
up using two or three.

@ TP

If you are ever tempted to "bit-bang” a protocol on RP2040, don't! Use the PIO instead. Frankly this is true for
anything that repeatedly reads or writes from GPIOs, but certainly anything which aims to transfer data.

3.2. Getting started with PIO

It is possible to write PIO programs both within the C++ SDK and directly from MicroPython.

Additionally the future intent is to add APIs to trivially have new UARTs, PWM channels etc created for you, using a
menu of pre-written PIO programs, but for now you'll have to follow along with example code and do that yourself.

3.2.1. A First PIO Application
Before getting into all of the fine details of the PIO assembly language, we should take the time to look at a small but
complete application which:
1. Loads a program into a PIO’s instruction memory
2. Sets up a PIO state machine to run the program
3. Interacts with the state machine once it is running.
The main ingredients in this recipe are:
* A PIO program
® Some software, written in C, to run the whole show

* A CMake file describing how these two are combined into a program image to load onto a RP2040-based
development board

]
3.2. Getting started with PIO 33

Raspberry Pi Pico C/C++ SDK
]

@ TP

The code listings in this section are all part of a complete application on GitHub, which you can build and run. Just
click the link above each listing to go to the source. In this section we are looking at the pio/hello_pio example in
pico-examples. You might choose to build this application and run it, to see what it does, before reading through this
section.

O NoTE

The focus here is on the main moving parts required to use a PIO program, not so much on the PIO program itself.
This is a lot to take in, so we will stay high-level in this example, and dig in deeper on the next one.

3.2.1.1. PIO Program
This is our first PIO program listing. It's written in PIO assembly language.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio Lines 7 - 15

7 .program hello

8

9 ; Repeatedly get one word of data from the TX FIFO, stalling when the FIFO is
10 ; empty. Write the least significant bit to the OUT pin group.

11

12 loop:

13 pull

14 out pins, 1
15 jmp loop

The pull instruction takes one data item from the transmit FIFO buffer, and places it in the output shift register (OSR).
Data moves from the FIFO to the OSR one word (32 bits) at a time. The OSR is able to shift this data out, one or more
bits at a time, to further destinations, using an out instruction.

FIFOs?

FIFOs are data queues, implemented in hardware. Each state machine has two FIFOs, between the state
machine and the system bus, for data travelling out of (TX) and into (RX) the chip. Their name (first in,
first out) comes from the fact that data appears at the FIFO’s output in the same order as it was
presented to the FIFO's input.

The out instruction here takes one bit from the data we just pull-ed from the FIFO, and writes that data to some pins. We
will see later how to decide which pins these are.

The jmp instruction jumps back to the 1oop: label, so that the program repeats indefinitely. So, to sum up the function of
this program: repeatedly take one data item from a FIFO, take one bit from this data item, and write it to a pin.

Our .pio file also contains a helper function to set up a PIO state machine for correct execution of this program:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio Lines 18 - 33

18 static inline void hello_program_init(PIO pio, uint sm, uint offset, uint pin) {

19 pio_sm_config ¢ = hello_program_get_default_config(offset);

20

21 // Map the state machine's OUT pin group to one pin, namely the “pin’
22 // parameter to this function.

23 sm_config_set_out_pins(&c, pin, 1);

24 // Set this pin's GPIO function (connect PIO to the pad)

25 pio_gpio_init(pio, pin);

]
3.2. Getting started with PIO 34

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio#L7-L15
https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio#L18-L33

Raspberry Pi Pico C/C++ SDK
]

26 // Set the pin direction to output at the PIO

27 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

28

29 // Load our configuration, and jump to the start of the program
30 pio_sm_init(pio, sm, offset, &c);

31 // Set the state machine running

32 pio_sm_set_enabled(pio, sm, true);

33 }

Here the main thing to set up is the GPIO we intend to output our data to. There are three things to consider here:

1. The state machine needs to be told which GPIO or GPIOs to output to. There are four different pin groups which
are used by different instructions in different situations; here we are using the out pin group, because we are just

using an out instruction.

2. The GPIO also needs to be told that PIO is in control of it (GPIO function select)

3. If we are using the pin for output only, we need to make sure that PIO is driving the output enable line high. PIO can

drive this line up and down programmatically using e.g. an out pindirs instruction, but here we are setting it up

before starting the program.

3.2.1.2. C Program

PIO won't do anything until it's been configured properly, so we need some software to do that. The PIO file we just
looked at — hello.pio —is converted automatically (we will see later how) into a header containing our assembled PIO

program binary, any helper functions we included in the file, and some useful information about the program. We
include this as hello.pio.h.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.c

1
2
3
4

o N o »

10
11
12
13
14
1%
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
74

#include "pico/stdlib.h"
#include "hardware/pio.h"
// Our assembled program:
#include "hello.pio.h"

int main() {
#ifndef PICO_DEFAULT_LED_PIN
#warning pio/hello_pio example requires a board with a regular LED
#else
// Choose which PIO instance to use (there are two instances)
PIO pio = pio@;

// Our assembled program needs to be loaded into this PIO's instruction
// memory. This SDK function will find a location (offset) in the

// instruction memory where there is enough space for our program. We need

// to remember this location!
uint offset = pio_add_program(pio, &hello_program);

// Find a free state machine on our chosen PIO (erroring if there are
// none). Configure it to run our program, and start it, using the

// helper function we included in our .pio file.

uint sm = pio_claim_unused_sm(pio, true);

hello_program_init(pio, sm, offset, PICO_DEFAULT_LED_PIN);

// The state machine is now running. Any value we push to its TX FIFO will

]
3.2. Getting started with PIO

35

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.c

Raspberry Pi Pico C/C++ SDK
]

32 // appear on the LED pin.

33 while (true) {

34 // Blink

35 pio_sm_put_blocking(pio, sm, 1);
36 sleep_ms(500) ;

37 // Blonk

38 pio_sm_put_blocking(pio, sm, 0);
39 sleep_ms(500) ;

40 }

41 #endif

42 }

You might recall that RP2040 has two PIO blocks, each of them with four state machines. Each PIO block has a 32-slot
instruction memory which is visible to the four state machines in the block. We need to load our program into this
instruction memory before any of our state machines can run the program. The function pio_add_program() finds free
space for our program in a given PIQO’s instruction memory, and loads it.

32 Instructions?

This may not sound like a lot, but the P10 instruction set can be very dense once you fully explore its
features. A perfectly serviceable UART transmit program can be implemented in four instructions, as
shown in the pio/uart_tx example in pico-examples. There are also a couple of ways for a state machine
to execute instructions from other sources — like directly from the FIFOs — which you can read all about
in the RP2040 Datasheet.

Once the program is loaded, we find a free state machine and tell it to run our program. There is nothing stopping us
from ordering multiple state machines to run the same program. Likewise, we could instruct each state machine to run
a different program, provided they all fit into the instruction memory at once.

We're configuring this state machine to output its data to the LED on your Raspberry Pi Pico board. If you have already
built and run the program, you probably noticed this already!

At this point, the state machine is running autonomously. The state machine will immediately stall, because it is waiting
for data in the TX FIFO, and we haven't provided any. The processor can push data directly into the state machine’s TX
FIFO using the pio_sm_put_blocking() function. (_blocking because this function stalls the processor when the TX FIFO is
full.) Writing a 1 will turn the LED on, and writing a 0 will turn the LED off.

3.2.1.3. CMake File

We have two lovely text files sat on our computer, with names ending with .pio and .c, but they aren’t doing us much
good there. A CMake file describes how these are built into a binary suitable for loading onto your Raspberry Pi Pico or
other RP2040-based board.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/CMakeLists.txt

1 add_executable(hello_pio)

2

3 pico_generate_pio_header(hello_pio ${CMAKE_CURRENT_LIST_DIR}/hello.pio)
4

5 target_sources(hello_pio PRIVATE hello.c)
6

7 target_link_libraries(hello_pio PRIVATE

8 pico_stdlib

9 hardware_pio

10)

11

12 pico_add_extra_outputs(hello_pio)

13

]
3.2. Getting started with PIO 36

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

Figure 3. WS2812 line
format. Wide positive
pulse for 1, narrow
positive pulse for 0,
very long negative
pulse for latch enable

14 # add url via pico_set_program_url
15 example_auto_set_url(hello_pio)

add_executable(): Declare that we are building a program called hello_pio

® pico_generate_pio_header(): Declare that we have a PIO program, hello.pio, which we want to be built into a C header
for use with our program

® target_sources(): List the source code files for our hello_pio program. In this case, just one C file.

target_link_libraries(): Make sure that our program is built with the PIO hardware API, so we can call functions like
pio_add_program() in our C file.

® pico_add_extra_outputs(): By default we just get an .elf file as the build output of our app. Here we declare we also
want extra build formats, like a .uf2 file which can be dragged and dropped directly onto a Raspberry Pi Pico
attached over USB.

Assuming you already have pico-examples and the SDK installed on your machine, you can run

$ mkdir build

S cd build

$ cmake ..

$ make hello_pio

To build this program.

3.2.2. A Real Example: WS2812 LEDs

The WS2812 LED (sometimes sold as NeoPixel) is an addressable RGB LED. In other words, it's an LED where the red,
green and blue components of the light can be individually controlled, and it can be connected in such a way that many
WS2812 LEDs can be controlled individually, with only a single control input. Each LED has a pair of power supply
terminals, a serial data input, and a serial data output.

When serial data is presented at the LED’s input, it takes the first three bytes for itself (red, green, blue) and the
remainder is passed along to its serial data output. Often these LEDs are connected in a single long chain, each LED
connected to a common power supply, and each LED’s data output connected through to the next LED’s input. A long
burst of serial data to the first in the chain (the one with its data input unconnected) will deposit three bytes of RGB data
in each LED, so their colour and brightness can be individually programmed.

Symbol [[I T ol W T ol W T 2T N Trawhl ﬂ

Output

Unfortunately the LEDs receive and retransmit serial data in quite an unusual format. Each bit is transferred as a
positive pulse, and the width of the pulse determines whether it is a 1 or a @ bit. There is a family of WS2812-like LEDs
available, which often have slightly different timings, and demand precision. It is possible to bit-bang this protocol, or to
write canned bit patterns into some generic serial peripheral like SPI or 12S to get firmer guarantees on the timing, but
there is still some software complexity and cost associated with generating the bit patterns.

Ideally we would like to have all of our CPU cycles available to generate colour patterns to put on the lights, or to handle
any other responsibilities the processor may have in the embedded system the LEDs are connected to.

]
3.2. Getting started with PIO 37

Raspberry Pi Pico C/C++ SDK
]

@ TP

Once more, this section is going to discuss a real, complete program, that you can build and run on your Raspberry
Pi Pico. Follow the links above the program listings if you'd prefer to build the program yourself and run it, before
going through it in detail. This section explores the pio/ws2812 example in pico-examples.

3.2.2.1. PIO Program

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 7 - 26

7 .program ws2812

8 .side_set 1

9

10 .define public T1 2
11 .define public T2 5
12 .define public T3 3

13

14 .lang_opt python sideset_init = pico.PIO.OUT_HIGH

15 .lang_opt python out_init = pico.PIO.OUT_HIGH

16 .lang_opt python out_shiftdir = 1

17

18 .wrap_target

19 bitloop:

20 out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls
21 jmp !'x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
22 do_one:

23 jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

24 do_zero:

25 nop side @ [T2 - 1] ; Or drive low, for a short pulse

26 .wrap

The previous example was a bit of a whistle-stop tour of the anatomy of a PIO-based application. This time we will
dissect the code line-by-line. The first line tells the assembler that we are defining a program named ws2812:

.program ws2812

We can have multiple programs in one .pio file (and you will see this if you click the GitHub link above the main program
listing), and each of these will have its own .program directive with a different name. The assembler will go through each
program in turn, and all the assembled programs will appear in the output file.

Each PIO instruction is 16 bits in size. Generally, 5 of those bits in each instruction are used for the “delay” which is
usually 0 to 31 cycles (after the instruction completes and before moving to the next instruction). If you have read the
P10 chapter of the RP2040 Datasheet, you may have already know that these 5 bits can be used for a different purpose:

.side_set 1

This directive .side_set 1 says we're stealing one of those delay bits to use for "side-set". The state machine will use this
bit to drive the values of some pins, once per instruction, in addition to what the instructions are themselves doing. This
is very useful for high frequency use cases (e.g. pixel clocks for DPI panels), but also for shrinking program size, to fit
into the shared instruction memory.

Note that stealing one bit has left our delay range from 0-15 (4 bits), but that is quite natural because you rarely want to
mix side-set with lower frequency stuff. Because we didn't say .side_set 1 opt, which would mean the side-set is
optional (at the cost of another bit to say whether the instruction does a side-set), we have to specify a side-set value for

]
3.2. Getting started with PIO 38

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L7-L26
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

every instruction in the program. This is the side N you will see on each instruction in the listing.

.define public T1 2
.define public T2 5
.define public T3 3

.define lets you declare constants. The public keyword means that the assembler will also write out the value of the
define in the output file for use by other software: in the context of the SDK, this is a #define. We are going to use T1, T2
and T3 in calculating the delay cycles on each instruction.

.lang_opt python

This is used to specify some PIO hardware defaults as used by the MicroPython PIO library. We don't need to worry
about them in the context of SDK applications.

.wrap_target

We'll ignore this for now, and come back to it later, when we meet its friend .wrap.

bitloop:

This is a label. A label tells the assembler that this point in your code is interesting to you, and you want to refer to it
later by name. Labels are mainly used with jmp instructions.

out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls

Finally we reach a line with a PIO instruction. There is a lot to see here.

® This is an out instruction. out takes some bits from the output shift register (OSR), and writes them somewhere
else. In this case, the OSR will contain pixel data destined for our LEDs.

® [T3 - 1]is the number of delay cycles (T3 minus 1). T3 is a constant we defined earlier.

x (one of two scratch registers; the other imaginatively called y) is the destination of the write data. State machines
use their scratch registers to hold and compare temporary data.

® side 0: Drive low (0) the pin configured for side-set.

Everything after the ; character is a comment. Comments are ignored by the assembler: they are just notes for
humans to read.

Output Shift Register

The OSR is a staging area for data entering the state machine through the TX FIFO. Data is pulled from

the TX FIFO into the OSR one 32-bit chunk at a time. When an out instruction is executed, the OSR can

break this data into smaller pieces by shifting to the left or right, and sending the bits that drop off the
end to one of a handful of different destinations, such as the pins.

The amount of data to be shifted is encoded by the out instruction, and the direction of the shift (left or
right) is configured ahead of time. For full details and diagrams, see the RP2040 Datasheet.

]
3.2. Getting started with PIO 39

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

So, the state machine will do the following operations when it executes this instruction:
1. Set 0 on the side-set pin (this happens even if the instruction stalls because no data is available in the OSR)
2. Shift one bit out of the OSR into the x register. The value of the x register will be either 0 or 1.

3. Wait 73 - 1 cycles after the instruction (I.e. the whole thing takes T3 cycles since the instruction itself took a cycle).
Note that when we say cycle, we mean state machine execution cycles: a state machine can be made to execute at
a slower rate than the system clock, by configuring its clock divider.

Let's look at the next instruction in the program.

jmp !'x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse

1. side 1 on the side-set pin (this is the leading edge of our pulse)
2. If x == 0 then go to the instruction labelled do_zero, otherwise continue on sequentially to the next instruction
3. We delay 1 - 1 after the instruction (whether the branch is taken or not)

Let’s look at what our output pin has done so far in the program.

Figure 4. The state
machine drives the

T >

1A

line low for time T1 as
it shifts out one data
bit from the OSR, and

x’;;s’:'bg:’a;‘;gi? The pin has been low for time T3, and high for time T1. If the x register is 1 (remember this contains our 1 bit of pixel

thevalve of the pit. data) then we will fall through to the instruction labelled do_one:

GPIO

do_one:
jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

On this side of the branch we do the following:
1. side 1 on the side-set pin (continue the pulse)

2. jmp unconditionally back to bitloop (the label we defined earlier, at the top of the program); the state machine is
done with this data bit, and will get another from its OSR

3. Delay for 72 - 1 cycles after the instruction

The waveform at our output pin now looks like this:

Figure 5. On a one

data bit, the line is €—— T3 > m > T2 —»
driven low for time T3,

high for time T1, then GPIO
high for an additional

time T2

This accounts for the case where we shifted a 1 data bit into the x register. For a @ bit, we will have jumped over the last
instruction we looked at, to the instruction labelled do_zero:

do_zero:
nop side @ [T2 - 1] ; Or drive low, for a short pulse

1. side 0 on the side-set pin (the trailing edge of our pulse)
2. nop means no operation. We don’t have anything else we particularly want to do, so waste a cycle

3. The instruction takes T2 cycles in total

]
3.2. Getting started with PIO 40

Raspberry Pi Pico C/C++ SDK

Figure 6. On a zero
data bit, the line is
driven low for time T3,
high for time T1, then
low again for time T1

Figure 7. The line is
initially low in the idle
(latch) state, and the
LED is waiting for the
first rising edge. It
sees our pulse timings
in the order T1-T2-T3,
until the very last T3,
where it sees a much
longer negative period
once the state
machine runs out of
data.

For the x == 0 case, we get this on our output pin:

E— B —PC—————— Tl —————— P —— 72—
1
I

/ { i

|

GPIO

The final line of our program is this:

.wrap

This matches with the .wrap_target directive at the top of the program. Wrapping is a hardware feature of the state
machine which behaves like a wormhole: you go in through the .wrap statement and appear at the .wrap_target zero
cycles later, unless the .wrap is preceded immediately by a jmp whose condition is true. This is important for getting
precise timing with programs that must run quickly, and often also saves you a slot in the instruction memory.

@ TIF

Often an explicit .wrap_target/.wrap pair is not necessary, because the default configuration produced by pioasm has
an implicit wrap from the end of the program back to the beginning, if you didn’t specify one.

NOPs

NOP, or no operation, means precisely that: do nothing! You may notice there is no nop instruction
defined in the instruction set reference: nop is really a synonym for mov y, yin PIO assembly.

Why did we insert a nop in this example when we could have jmp-ed? Good question! It's a dramatic
device we contrived so we could discuss nop and .wrap. Writing documentation is hard. In general,
though, nop is useful when you need to perform a side-set and have nothing else to do, or you need a
very slightly longer delay than is available on a single instruction.

It is hopefully becoming clear why our timings T1, T2, T3 are numbered this way, because what the LED string sees
really is one of these two cases:

T T2 ——P—— T3 ——
'

-

Data=0

Data=1

This should look familiar if you refer back to Figure 3.

After thoroughly dissecting our program, and hopefully being satisfied that it will repeatedly send one well-formed data
bit to a string of WS2812 LEDs, we're left with a question: where is the data coming from? This is more thoroughly
explained in the RP2040 Datasheet, but the data that we are shifting out from the OSR came from the state machine’s
TX FIFO. The TX FIFO is a data buffer between the state machine and the rest of RP2040, filled either via direct poking
from the CPU, or by the system DMA, which is much faster.

The out instruction shifts data out from the OSR, and zeroes are shifted in from the other end to fill the vacuum.
Because the OSR is 32 bits wide, you will start getting zeroes once you have shifted out a total of 32 bits. There is a pull
instruction which explicitly takes data from the TX FIFO and put it in the OSR (stalling the state machine if the FIFO is

empty).

However, in the majority of cases it is simpler to configure autopull, a mode where the state machine automatically
refills the OSR from the TX FIFO (an automatic pull) when a configured number of bits have been shifted out. Autopull
happens in the background, in parallel with whatever else the state machine may be up to (in other words it has a cost
of zero cycles). We'll see how this is configured in the next section.

3.2. Getting started with PIO

41

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

3.2.2.2. State Machine Configuration

When we run pioasm on the .pio file we have been looking at, and ask it to spit out SDK code (which is the default), it will
create some static variables describing the program, and a method ws2812_default_program_config which configures a
PIO state machine based on user parameters, and the directives in the actual PIO program (namely the .side_set and
.wrap in this case).

Of course how you configure the PIO SM when using the program is very much related to the program you have written.
Rather than try to store a data representation off all that information, and parse it at runtime, for the use cases where
you'd like to encapsulate setup or other API functions with your PIO program, you can embed code within the .pio file.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 31 - 47

31 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

32

33 pio_gpio_init(pio, pin);

34 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

35

36 pio_sm_config ¢ = ws2812_program_get_default_config(offset);
37 sm_config_set_sideset_pins(&c, pin);

38 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);

39 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

40

41 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;

42 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
43 sm_config_set_clkdiv(&c, div);

44

45 pio_sm_init(pio, sm, offset, &c);

46 pio_sm_set_enabled(pio, sm, true);

47 }

In this case we are passing through code for the SDK, as requested by this line you will see if you click the link on the
above listing to see the context:

% c-sdk {

We have here a function ws2812_program_init which is provided to help the user to instantiate an instance of the LED
driver program, based on a handful of parameters:

pio
Which of RP2040’s two PIO instances we are dealing with

sm

Which state machine on that PIO we want to configure to run the WS2812 program

offset

Where the PIO program was loaded in PIO’s 5-bit program address space
pin
which GPIO pin our WS2812 LED chain is connected to

freq

The frequency (or rather baud rate) we want to output data at.
rgbw

True if we are using 4-colour LEDs (red, green, blue, white) rather than the usual 3.
Such that:

]
3.2. Getting started with PIO 42

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L31-L47

Raspberry Pi Pico C/C++ SDK
]

pio_gpio_init(pio, pin); Configure a GPIO for use by PIO. (Set the GPIO function select.)

® pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true); Sets the PIO pin direction of 1 pin starting at pin number pin
to out

pio_sm_config ¢ = ws2812_program_default_config(offset); Get the default configuration using the generated function
for this program (this includes things like the .wrap and .side_set configurations from the program). We'll modify
this configuration before loading it into the state machine.

sm_config_set_sideset_pins(&c, pin); Sets the side-set to write to pins starting at pin pin (we say starting at because
if you had .side_set 3, then it would be outputting values on numbers pin, pin+1, pin+2)

sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24); False for shift_to_right (i.e. we want to shift out MSB
first). True for autopull. 32 or 24 for the number of bits for the autopull threshold, i.e. the point at which the state
machine triggers a refill of the OSR, depending on whether the LEDs are RGB or RGBW.

® int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3; This is the total number of execution cycles to output a
single bit. Here we see the benefit of .define public; we can use the T1 - T3 values in our code.

® float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit); sm_config_clkdiv(&c, div); Slow the state machine’s
execution down, based on the system clock speed and the number of execution cycles required per WS2812 data
bit, so that we achieve the correct bit rate.

® pio_sm_init(pio, sm, offset, &c); Load our configuration into the state machine, and go to the start address (offset)

pio_sm_set_enabled(pio, sm, true); And make it go now!

At this point the program will be stuck on the first out waiting for data. This is because we have autopull enabled, the
OSR is initially empty, and there is no data to be pulled. The state machine refuses to continue until the first piece of
data arrives in the FIFO.

As an aside, this last point sheds some light on the slightly cryptic comment at the start of the PIO program:

out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls

This comment is giving us an important piece of context. We stall on this instruction initially, before the first data is
added, and also every time we finish sending the last piece of data at the end of a long serial burst. When a state
machine stalls, it does not continue to the next instruction, rather it will reattempt the current instruction on the next
divided clock cycle. However, side-set still takes place. This works in our favour here, because we consequently always
return the line to the idle (low) state when we stall.

3.2.2.3. C Program

The companion to the .pio file we've looked at is a .c file which drives some interesting colour patterns out onto a string
of LEDs. We'll just look at the parts that are directly relevant to PIO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 25 - 27

25 static inline void put_pixel(uint32_t pixel_grb) {
26 pio_sm_put_blocking(pio®, @, pixel_grb << 8u);
27 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 29 - 34

29 static inline uint32_t urgb_u32(uint8_t r, uint8_t g, uint8_t b) {

30 return
31 ((uint32_t) (r) << 8) |
32 ((uint32_t) (g) << 16) |

]
3.2. Getting started with PIO 43

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L25-L27
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L29-L34

Raspberry Pi Pico C/C++ SDK
]

33 (uint32_t) (b);
34 }

Here we are writing 32-bit values into the FIFO, one at a time, directly from the CPU. pio_sm_put_blocking is a helper
method that waits until there is room in the FIFO before pushing your data.

You'll notice the << 8 in put_pixel(): remember we are shifting out starting with the MSB, so we want the 24-bit colour
values at the top. This works fine for WGBR too, just that the W is always 0.

This program has a handful of colour patterns, which call our put_pixel helper above to output a sequence of pixel
values:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 50 - 55

50 void pattern_random(uint len, uint t) {

51 if (t % 8)

52 return;

53 for (int i = @; i < len; ++i)
54 put_pixel(rand());

55 }

The main function loads the program onto a PIO, configures a state machine for 800 kbaud WS2812 transmission, and
then starts cycling through the colour patterns randomly.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 84 - 108

84 int main() {

85 //set_sys_clock_48();

86 stdio_init_all();

87 printf("WS2812 Smoke Test, using pin %d", WS2812_PIN);
88

89 // todo get free sm

90 PIO pio = pio@;

91 int sm = 0;

92 uint offset = pio_add_program(pio, &ws2812_program);
93

94 ws2812_program_init(pio, sm, offset, WS2812_PIN, 800000, IS_RGBW);
95

96 int t = 0;

97 while (1) {

98 int pat = rand() % count_of(pattern_table);

99 int dir = (rand() >>30) & 1 2 1 : -1;

100 puts(pattern_table[pat].name);

101 puts(dir == 1 ? "(forward)" : "(backward)");

102 for (int i = @; 1 < 1000; ++i) {

103 pattern_table[pat].pat(NUM_PIXELS, t);

104 sleep_ms(10);

105 t += dir;

106 }

107 }

108 }

3.2.3. P10 and DMA (A Logic Analyser)

So far we have looked at writing data to PIO directly from the processor. This often leads to the processor spinning its
wheels waiting for room in a FIFO to make a data transfer, which is not a good investment of its time. It also limits the
total data throughput you can achieve.

3.2. Getting started with PIO 44

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L50-L55
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L84-L108

Raspberry Pi Pico C/C++ SDK
]

RP2040 is equipped with a powerful direct memory access unit (DMA), which can transfer data for you in the
background. Suitably programmed, the DMA can make quite long sequences of transfers without supervision. Up to one
word per system clock can be transferred to or from a PIO state machine, which is, to be quite technically precise, more
bandwidth than you can shake a stick at. The bandwidth is shared across all state machines, but you can use the full
amount on one state machine.

Let's take a look at the logic_analyser example, which uses PIO to sample some of RP2040’s own pins, and capture a
logic trace of what is going on there, at full system speed.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 40 - 63

40 void logic_analyser_init(PIO pio, uint sm, uint pin_base, uint pin_count, float div) {

41 // Load a program to capture n pins. This is just a single ‘in pins, n’
42 // instruction with a wrap.

43 uint16_t capture_prog_instr = pio_encode_in(pio_pins, pin_count);

44 struct pio_program capture_prog = {

45 .instructions = &capture_prog_instr,

46 .length = 1,

47 .origin = -1

48 +

49 uint offset = pio_add_program(pio, &capture_prog);

50

51 // Configure state machine to loop over this ‘in" instruction forever
52 // with autopush enabled.

53 pio_sm_config ¢ = pio_get_default_sm_config();

54 sm_config_set_in_pins(&c, pin_base);

55 sm_config_set_wrap(&c, offset, offset);

56 sm_config_set_clkdiv(&c, div);

57 // Note that we may push at a < 32 bit threshold if pin_count does not
58 // divide 32. We are using shift-to-right, so the sample data ends up
59 // left-justified in the FIFO in this case, with some zeroes at the LSBs.
60 sm_config_set_in_shift(&c, true, true, bits_packed_per_word(pin_count));
61 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);

62 pio_sm_init(pio, sm, offset, &c);

63 }

Our program consists only of a single in pins, <pin_count> instruction, with program wrapping and autopull enabled.
Because the amount of data to be shifted is only known at runtime, and because the program is so short, we are
generating the program dynamically here (using the pio_encode_ functions) instead of pushing it through pioasm. The
program is wrapped in a data structure stating how big the program is, and where it must be loaded — in this case origin
= -1 meaning "don't care".

Input Shift Register

The input shift register (ISR) is the mirror image of the OSR. Generally data flows through a state
machine in one of two directions: System — TX FIFO — OSR — Pins, or Pins — ISR — RX FIFO —
System. An in instruction shifts data into the ISR.

If you don't need the ISR’s shifting ability — for example, if your program is output-only — you can use the
ISR as a third scratch register. It's 32 bits in size, the same as X, Y and the OSR. The full details are in the
RP2040 Datasheet.

We load the program into the chosen PIO, and then configure the input pin mapping on the chosen state machine so
that its in pins instruction will see the pins we care about. For an in instruction we only need to worry about configuring
the base pin, i.e. the pin which is the least significant bit of the in instruction’s sample. The number of pins to be
sampled is determined by the bit count parameter of the in pins instruction — it will sample n pins starting at the base
we specified, and shift them into the ISR.

]
3.2. Getting started with PIO 45

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L40-L63
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

Pin Groups (Mapping)

We mentioned earlier that there are four pin groups to configure, to connect a state machine’s internal
data buses to the GPIOs it manipulates. A state machine accesses all pins within a group at once, and
pin groups can overlap. So far we have seen the out, side-set and in pin groups. The fourth is set.

The out group is the pins affected by shifting out data from the OSR, using out pins or out pindirs, up to
32 bits at a time. The set group is used with set pins and set pindirs instructions, up to 5 bits at a time,
with data that is encoded directly in the instruction. It's useful for toggling control signals. The side-set
group is similar to the set group, but runs simultaneously with another instruction. Note: mov pin uses
the in or out group, depending on direction.

Configuring the clock divider optionally slows down the state machine’s execution: a clock divisor of n means 1
instruction will be executed per n system clock cycles. The default system clock frequency for SDK is 125MHz.

sm_config_set_in_shift sets the shift direction to rightward, enables autopush, and sets the autopush threshold to 32.
The state machine keeps an eye on the total amount of data shifted into the ISR, and on the in which reaches or
breaches a total shift count of 32 (or whatever number you have configured), the ISR contents, along with the new data
from the in. goes straight to the RX FIFO. The ISR is cleared to zero in the same operation.

sm_config_set_fifo_join is used to manipulate the FIFOs so that the DMA can get more throughput. If we want to sample
every pin on every clock cycle, that’s a lot of bandwidth! We've finished describing how the state machine should be
configured, so we use pio_sm_init to load the configuration into the state machine, and get the state machine into a
clean initial state.

FIFO Joining

Each state machine is equipped with a FIFO going in each direction: the TX FIFO buffers data on its way
out of the system, and the RX FIFO does the same for data coming in. Each FIFO has four data slots,
each holding 32 bits of data. Generally you want FIFOs to be as deep as possible, so there is more slack
time between the timing-critical operation of a peripheral, and data transfers from system agents which
may be quite busy or have high access latency. However this comes with significant hardware cost.

If you are only using one of the two FIFOs — TX or RX — a state machine can pool its resources to
provide a single FIFO with double the depth. The RP2040 Datasheet goes into much more detail,
including how this mechanism actually works under the hood.

Our state machine is ready to sample some pins. Let's take a look at how we hook up the DMA to our state machine,
and tell the state machine to start sampling once it sees some trigger condition.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 65 - 87

65 void logic_analyser_arm(PIO pio, uint sm, uint dma_chan, uint32_t *capture_buf, size_t
capture_size_words,

66 uint trigger_pin, bool trigger_level) {

67 pio_sm_set_enabled(pio, sm, false);

68 // Need to clear _input shift counter_, as well as FIFO, because there may be
69 // partial ISR contents left over from a previous run. sm_restart does this.
70 pio_sm_clear_fifos(pio, sm);

71 pio_sm_restart(pio, sm);

72

73 dma_channel_config ¢ = dma_channel_get_default_config(dma_chan);

74 channel_config_set_read_increment(&c, false);

75 channel_config_set_write_increment(&c, true);

76 channel_config_set_dreq(&c, pio_get_dreq(pio, sm, false));

77

78 dma_channel_configure(dma_chan, &c,

79 capture_buf, // Destination pointer

80 &pio->rxf[sm], // Source pointer

81 capture_size_words, // Number of transfers

]
3.2. Getting started with PIO 46

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L65-L87

Raspberry Pi Pico C/C++ SDK

82 true // Start immediately

83)5

84

85 pio_sm_exec(pio, sm, pio_encode_wait_gpio(trigger_level, trigger_pin));
86 pio_sm_set_enabled(pio, sm, true);

87 }

We want the DMA to read from the RX FIFO on our PIO state machine, so every DMA read is from the same address.
The write address, on the other hand, should increment after every DMA transfer so that the DMA gradually fills up our
capture buffer as data comes in. We need to specify a data request signal (DREQ) so that the DMA transfers data at the
proper rate.

Data request signals

The DMA can transfer data incredibly fast, and almost invariably this will be much faster than your PIO
program actually needs. The DMA paces itself based on a data request handshake with the state
machine, so there’s no worry about it overflowing or underflowing a FIFO, as long as you have selected
the correct DREQ signal. The state machine coordinates with the DMA to tell it when it has room
available in its TX FIFO, or data available in its RX FIFO.

We need to provide the DMA channel with an initial read address, an initial write address, and the total number of
reads/writes to be performed (not the total number of bytes). We start the DMA channel immediately — from this point
on, the DMA is poised, waiting for the state machine to produce data. As soon as data appears in the RX FIFO, the DMA
will pounce and whisk the data away to our capture buffer in system memory.

As things stand right now, the state machine will immediately go into a 1-cycle loop of in instructions once enabled.
Since the system memory available for capture is quite limited, it would be better for the state machine to wait for some
trigger before it starts sampling. Specifically, we are using a wait pin instruction to stall the state machine until a certain
pin goes high or low, and again we are using one of the pio_encode_ functions to encode this instruction on-the-fly.

pio_sm_exec tells the state machine to immediately execute some instruction you give it. This instruction never gets
written to the instruction memory, and if the instruction stalls (as it will in this case —a wait instruction’s job is to stall)
then the state machine will latch the instruction until it completes. With the state machine stalled on the wait instruction,
we can enable it without being immediately flooded by data.

At this point everything is armed and waiting for the trigger signal from the chosen GPIO. This will lead to the following
sequence of events:

1. The wait instruction will clear
2. On the very next cycle, state machine will start to execute in instructions from the program memory
3. As soon as data appears in the RX FIFO, the DMA will start to transfer it.

4. Once the requested amount of data has been transferred by the DMA, it'll automatically stop
State Machine EXEC Functionality

So far our state machines have executed instructions from the instruction memory, but there are other
options. One is the SMx_INSTR register (used by pio_sm_exec()): the state machine will immediately execute
whatever you write here, momentarily interrupting the current program it’s running if necessary. This is
useful for poking around inside the state machine from the system side, for initial setup.

The other two options, which use the same underlying hardware, are out exec (shift out an instruction
from the data being streamed through the OSR, and execute it) and mov exec (execute an instruction
stashed in e.g. a scratch register). Besides making people’s eyes bulge, these are really useful if you

want the state machine to perform some data-defined operation at a certain point in an output stream.

The example code provides this cute function for displaying the captured logic trace as ASCII art in a terminal:

3.2. Getting started with PIO 47

Raspberry Pi Pico C/C++ SDK
]

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 89 - 108

89 void print_capture_buf(const uint32_t *buf, uint pin_base, uint pin_count, uint32_t
n_samples) {

90 // Display the capture buffer in text form, like this:

91] RS e e === e =e

92 // 01 - __ -

93 printf("Capture:\n");

94 // Each FIFO record may be only partially filled with bits, depending on

95 // whether pin_count is a factor of 32.

96 uint record_size_bits = bits_packed_per_word(pin_count);

97 for (int pin = ©@; pin < pin_count; ++pin) {

98 printf("%02d: ", pin + pin_base);

99 for (int sample = ©; sample < n_samples; ++sample) {

100 uint bit_index = pin + sample * pin_count;

101 uint word_index = bit_index / record_size_bits;

102 // Data is left-justified in each FIFO entry, hence the (32 - record_size_bits)
offset

103 uint word_mask = Tu << (bit_index % record_size_bits + 32 - record_size_bits);

104 printf(buf[word_index] & word_mask ? "-" : "_");

105 }

106 printf("\n");

107 }

108 }

We have everything we need now for RP2040 to capture a logic trace of its own pins, whilst running some other
program. Here we're setting up a PWM slice to output at around 15MHz on two GPIOs, and attaching our brand
spanking new logic analyser to those same two GPIOs.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 110 - 159

118 int main() {

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

stdio_init_all();
printf("PIO logic analyser example\n");

// We're going to capture into a u32 buffer, for best DMA efficiency. Need

// to be careful of rounding in case the number of pins being sampled

// isn't a power of 2.

uint total_sample_bits = CAPTURE_N_SAMPLES * CAPTURE_PIN_COUNT;

total_sample_bits += bits_packed_per_word(CAPTURE_PIN_COUNT) - 1;

uint buf_size_words = total_sample_bits / bits_packed_per_word(CAPTURE_PIN_COUNT) ;
uint32_t *capture_buf = malloc(buf_size_words * sizeof(uint32_t));
hard_assert(capture_buf);

// Grant high bus priority to the DMA, so it can shove the processors out
// of the way. This should only be needed if you are pushing things up to
// >16bits/clk here, i.e. if you need to saturate the bus completely.
bus_ctrl_hw->priority = BUSCTRL_BUS_PRIORITY_DMA_W_BITS |

BUSCTRL_BUS_PRIORITY_DMA_R_BITS;

127
128
129
130
131
132
133
134
135

PIO pio = pio@;
uint sm = 0;
uint dma_chan = 0;

logic_analyser_init(pio, sm, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, 1.f);

printf("Arming trigger\n");
logic_analyser_arm(pio, sm, dma_chan, capture_buf, buf_size_words, CAPTURE_PIN_BASE,

true);

136
137

printf("Starting PWM example\n");

]
3.2. Getting started with PIO 48

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L89-L108
https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L110-L159

Raspberry Pi Pico C/C++ SDK
]

138 // PWM example: =-----=-----c--mm oo
139 gpio_set_function(CAPTURE_PIN_BASE, GPIO_FUNC_PWM);

140 gpio_set_function(CAPTURE_PIN_BASE + 1, GPIO_FUNC_PWM);

141 // Topmost value of 3: count from @ to 3 and then wrap, so period is 4 cycles
142 pwm_hw->slice[0].top = 3;

143 // Divide frequency by two to slow things down a little

144 pwm_hw->slice[0].div = 4 << PWM_CHO_DIV_INT_LSB;

145 // Set channel A to be high for 1 cycle each period (duty cycle 1/4) and
146 // channel B for 3 cycles (duty cycle 3/4)

147 pwm_hw->slice[0].cc =

148 (1 << PWM_CH@_CC_A_LSB) |

149 (3 << PWM_CH@_CC_B_LSB);

150 // Enable this PWM slice

151 pwm_hw->slice[@].csr = PWM_CHO_CSR_EN_BITS;

152 A
153

154 // The logic analyser should have started capturing as soon as it saw the
155 // first transition. Wait until the last sample comes in from the DMA.

156 dma_channel_wait_for_finish_blocking(dma_chan);

157

158 print_capture_buf(capture_buf, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, CAPTURE_N_SAMPLES);
159 }

The output of the program looks like this:

Starting PWM example
Capture:

16: ---- -——-- -——-- -——-- -——--

177 —=mmmmmmmme e e e e

3.2.4. Further examples

Hopefully what you have seen so far has given some idea of how PIO applications can be built with the SDK. The
RP2040 Datasheet contains many more documented examples, which highlight particular hardware features of PIO, or
show how particular hardware interfaces can be implemented.

You can also browse the pio/ directory in the Pico Examples repository.

3.3. Using PIOASM, the PIO Assembler

Up until now, we have glossed over the details of how the assembly program in our .pio file is translated into a binary
program, ready to be loaded into our PIO state machine. Programs that handle this task — translating assembly code
into binary — are generally referred to as assemblers, and PIO is no exception in this regard. The SDK includes an
assembler for PIO, called pioasm. The SDK handles the details of building this tool for you behind the scenes, and then
using it to build your PIO programs, for you to #include from your C or C++ program. pioasm can also be used directly, and
has a few features not used by the C++ SDK, such as generating programs suitable for use with the MicroPython PIO
library.

If you have built the pico-examples repository at any point, you will likely already have a pioasm binary in your build
directory, located under build/tools/pioasm/pioasm, which was bootstrapped for you before building any applications that
depend on it. If we want a standalone copy of pioasm, perhaps just to explore the available command-line options, we
can obtain it as follows (assuming the SDK is extracted at $PIC0O_SDK_PATH):

]
3.3. Using PIOASM, the PIO Assembler 49

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples

Raspberry Pi Pico C/C++ SDK

mkdir pioasm_build

cd pioasm_build

cmake SPICO_SDK_PATH/tools/pioasm
make

wr v v v

And then invoke as:

$./pioasm

3.3.1. Usage

A description of the command line arguments can be obtained by running:

$ pioasm -?

giving:

usage: pioasm <options> <input> (<output>)

Assemble file of PIO program(s) for use in applications.
<input> the input filename
<output> the output filename (or filename prefix if the output
format produces multiple outputs).
if not specified, a single output will be written to stdout

options:
-0 <output_format> select output_format (default 'c-sdk'); available options are:
c-sdk
C header suitable for use with the Raspberry Pi Pico SDK
python
Python file suitable for use with MicroPython
hex
Raw hex output (only valid for single program inputs)
-p <output_param> add a parameter to be passed to the outputter
-?, --help print this help and exit
© NOTE

Within the SDK you do not need to invoke pioasm directly, as the CMake function pico_generate_pio_header (TARGET
PI0O_FILE) takes care of invoking pioasm and adding the generated header to the include path of the target TARGET
for you.

3.3.2. Directives

The following directives control the assembly of PIO programs:

Table 5. pioasm
directives

3.3. Using PIOASM, the PIO Assembler 50

Raspberry Pi Pico C/C++ SDK

.define (PUBLIC) <symbol> <value>

.program <name>

.origin <offset>

.side_set <count> (opt) (pindirs)

.wrap_target

.wrap

.lang_opt <lang> <name> <option>

.word <value>

3.3.3. Values

Define an integer symbol named <symbol> with the value <value> (see Section
3.3.3). If this .define appears before the first program in the input file, then the
define is global to all programs, otherwise it is local to the program in which it
occurs. If PUBLIC is specified the symbol will be emitted into the assembled
output for use by user code. For the SDK this takes the form of:

#tdefine <program_name>_<symbol> value for program symbols or #define <symbol>
value for global symbols

Start a new program with the name <name>. Note that that name is used in
code so should be alphanumeric/underscore not starting with a digit. The
program lasts until another .program directive or the end of the source file. PIO
instructions are only allowed within a program

Optional directive to specify the PIO instruction memory offset at which the
program must load. Most commonly this is used for programs that must load
at offset 0, because they use data based JMPs with the (absolute) jmp target
being stored in only a few bits. This directive is invalid outside of a program

If this directive is present, <count> indicates the number of side-set bits to be
used. Additionally opt may be specified to indicate that a side <value>is
optional for instructions (note this requires stealing an extra bit — in addition
to the <count> bits — from those available for the instruction delay). Finally,
pindirs may be specified to indicate that the side set values should be applied
to the PINDIRs and not the PINs. This directive is only valid within a program
before the first instruction

Place prior to an instruction, this directive specifies the instruction where
execution continues due to program wrapping. This directive is invalid outside
of a program, may only be used once within a program, and if not specified
defaults to the start of the program

Placed after an instruction, this directive specifies the instruction after which,
in normal control flow (i.e. jmp with false condition, or no jmp), the program
wraps (to .wrap_target instruction). This directive is invalid outside of a
program, may only be used once within a program, and if not specified
defaults to after the last program instruction.

Specifies an option for the program related to a particular language generator.
(See Section 3.3.10). This directive is invalid outside of a program

Stores a raw 16-bit value as an instruction in the program. This directive is
invalid outside of a program.

The following types of values can be used to define integer numbers or branch targets

le 6. Values i . .
T‘,”beé ,va vesin integer An integer value e.g. 3 or -7
pioasm, I.e. <value>
hex A hexadecimal value e.g. 0xf
binary A binary value e.g. 0b1001
symbol A value defined by a .define (see [pioasm_define])
<label> The instruction offset of the label within the program. This makes most sense when used with
a JMP instruction (see Section 3.4.2)
(<expression>) An expression to be evaluated; see expressions. Note that the parentheses are necessary.

3.3. Using PIOASM, the PIO Assembler

51

Raspberry Pi Pico C/C++ SDK
]

Table 7. Expressions
in pioasm i.e.
<expression>

3.3.4. Expressions

Expressions may be freely used within pioasm values.

<expression> + <expression>

The sum of two expressions

<expression> - <expression>

The difference of two expressions

<expression> * <expression>

The multiplication of two expressions

<expression> / <expression>

The integer division of two expressions

- <expression> The negation of another expression
:: <expression> The bit reverse of another expression
<value> Any value (see Section 3.3.3)

3.3.5. Comments

Line comments are supported with // or ;

C-style block comments are supported via /* and */

3.3.6. Labels

Labels are of the form:
<symbol>:

or

PUBLIC <symbol>:

at the start of a line.

@ TP

A label is really just an automatic .define with a value set to the current program instruction offset. A PUBLIC label is
exposed to the user code in the same way as a PUBLIC .define.

3.3.7. Instructions

All pioasm instructions follow a common pattern:

<instruction> (side <side_set_value>) ([<delay_value>])

where:

<instruction> Is an assembly instruction detailed in the following sections. (See Section 3.4)

<side_set_value> |s a value (see Section 3.3.3) to apply to the side_set pins at the start of the instruction. Note that

the rules for a side-set value via side <side_set_value> are dependent on the .side_set (see
[pioasm_side_set]) directive for the program. If no .side_set is specified then the side
<side_set_value> is invalid, if an optional number of sideset pins is specified then side
<side_set_value> may be present, and if a non-optional number of sideset pins is specified, then
side <side_set_value> is required. The <side_set_value> must fit within the number of side-set bits

specified in the .side_set directive.

]
3.3. Using PIOASM, the PIO Assembler

52

Raspberry Pi Pico C/C++ SDK

<delay_value> Specifies the number of cycles to delay after the instruction completes. The delay_value is
specified as a value (see Section 3.3.3), and in general is between 0 and 31 inclusive (a 5-bit
value), however the number of bits is reduced when sideset is enabled via the .side_set (see
[pioasm_side_set]) directive. If the <delay_value> is not present, then the instruction has no delay

© NoTE

pioasm instruction names, keywords and directives are case insensitive; lower case is used in the Assembly Syntax
sections below as this is the style used in the SDK.

© NoTE

Commas appear in some Assembly Syntax sections below, but are entirely optional, e.g. out pins, 3 may be written
out pins 3, and jmp x-- label may be written as jmp x--, label. The Assembly Syntax sections below uses the first
style in each case as this is the style used in the SDK.

3.3.8. Pseudoinstructions

Currently pioasm provides one pseudoinstruction, as a convenience:

nop Assembles to mov y, y. "No operation”, has no particular side effect, but a useful vehicle for a side-set
operation or an extra delay.

3.3.9. Output pass through

Text in the PIO file may be passed, unmodified, to the output based on the language generator being used.

For example the following (comment and function) would be included in the generated header when the default c-sdk
language generator is used.

% c-sdk {

// an inline function (since this is going in a header file)
static inline int some_c_code() {
return 0;

}

%}
The general format is

% target {
pass through contents
%}

with targets being recognized by a particular language generator (see Section 3.3.10; note that target is usually the
language generator name e.g. c-sdk, but could potentially be some_language.some_group if the language generator supports
different classes of pass through with different output locations.

This facility allows you to encapsulate both the PIO program and the associated setup required in the same source file.
See Section 3.3.10 for a more complete example.

3.3. Using PIOASM, the PIO Assembler 53

Raspberry Pi Pico C/C++ SDK
]

3.3.10. Language generators

The following example shows a multi program source file (with multiple programs) which we will use to highlight c-sdk
and python output features

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio

0w N O g~ WN =

W W RNNDNDDNDNDNDNDRNDNNDNNS2 23 2O 3 a2 a3 a2 a3 a2
- ® VW O N U WON -2 ® Voo NP WN_ OV

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
; SPDX-License-Identifier: BSD-3-Clause
.program ws2812
.side_set 1
.define public T1 2
.define public T2 5
.define public T3 3
.lang_opt python sideset_init = pico.PIO.OUT_HIGH
.lang_opt python out_init = pico.PIO.OUT_HIGH
.lang_opt python out_shiftdir = 1
.wrap_target
bitloop:
out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls
jmp !'x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
do_one:
jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

do_zero:

nop side @ [T2 - 1] ; Or drive low, for a short pulse
.wrap
% c-sdk {
#include "hardware/clocks.h"

static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

pio_gpio_init(pio, pin);
pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

pio_sm_config ¢ = ws2812_program_get_default_config(offset);
sm_config_set_sideset_pins(&c, pin);
sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
sm_config_set_clkdiv(&c, div);

pio_sm_init(pio, sm, offset, &c);
pio_sm_set_enabled(pio, sm, true);

}

%}
.program ws2812_parallel
.define public T1 2

.define public T2 5
.define public T3 3

]
3.3. Using PIOASM, the PIO Assembler 54

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio

Raspberry Pi Pico C/C++ SDK
]

56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

3.3.1

.wrap_target
out x, 32
mov pins, !null [T1-1]
mov pins, Xx [T2-1]
mov pins, null [T3-2]
.wrap
% c-sdk {
#include "hardware/clocks.h"

static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint pin_base,
uint pin_count, float freq) {

for(uint i=pin_base; i<pin_base+pin_count; i++) {
pio_gpio_init(pio, 1i);

}
pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);
pio_sm_config ¢ = ws2812_parallel_program_get_default_config(offset);
sm_config_set_out_shift(&c, true, true, 32);
sm_config_set_out_pins(&c, pin_base, pin_count);
sm_config_set_set_pins(&c, pin_base, pin_count);
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel_T2 + ws2812_parallel_T3;
float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
sm_config_set_clkdiv(&c, div);
pio_sm_init(pio, sm, offset, &c);
pio_sm_set_enabled(pio, sm, true);

}

%}

0.1. c-sdk

The c-sdk language generator produces a single header file with all the programs in the P10 source file:

The pass through sections (% c-sdk {) are embedded in the output, and the PUBLIC defines are available via #define

@ TP

pioas

m creates a function for each program (e.g. ws2812_program_get_default_config()) returning a pio_sm_config based

on the .side_set, .wrap and .wrap_target settings of the program, which you can then use as a basis for configuration
the PIO state machine.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.pio.h

0w N O U WwN =

a2 4a a4 a4
A W N =2 ®©® O

A e //
// This file is autogenerated by pioasm; do not edit! //
[======sssccmssmsossooomsomsossrsooESSESe eSS E oSS //
#pragma once

#1if !PICO_NO_HARDWARE

#include "hardware/pio.h"

#endif

Jf ====== //

// ws2812 //

I ====== //

3.3. Using PIOASM, the PIO Assembler 55

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.pio.h

Raspberry Pi Pico C/C++ SDK
]

15 #define ws2812_wrap_target @
16 #define ws2812_wrap 3

17

18 #define ws2812_T1 2

19 #define ws2812_T2 5

20 #define ws2812_T3 3

21

22 static const uint16_t ws2812_program_instructions[] = {
23 // .wrap_target

24 0x6221, // 0: out x, 1 side 0 [2]

25 ox1123, // 1: jmp Ix, 3 side 1 [1]

26 ox14ee, // 2: jmp /] side 1 [4]

27 Oxad442, // 3: nop side 0 [4]

28 // .wrap

29 };

30

31 #if !PICO_NO_HARDWARE
32 static const struct pio_program ws2812_program = {

33 .instructions = ws2812_program_instructions,

34 .length = 4,

815} .origin = -1,

36 };

37

38 static inline pio_sm_config ws2812_program_get_default_config(uint offset) {
39 pio_sm_config ¢ = pio_get_default_sm_config();

40 sm_config_set_wrap(&c, offset + ws2812_wrap_target, offset + ws2812_wrap);
41 sm_config_set_sideset(&c, 1, false, false);

42 return c;

43 }

44

45 #include "hardware/clocks.h”
46 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

47 pio_gpio_init(pio, pin);

48 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

49 pio_sm_config ¢ = ws2812_program_get_default_config(offset);
50 sm_config_set_sideset_pins(&c, pin);

51 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);

52 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

53 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;

54 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
65 sm_config_set_clkdiv(&c, div);

56 pio_sm_init(pio, sm, offset, &c);

57 pio_sm_set_enabled(pio, sm, true);

58 }

59

60 #endif

61

@2 Jf ==============s //

63 // ws2812_parallel //

@ Jf ====mmmcmmmmmss //

65

66 #define ws2812_parallel_wrap_target @
67 #define ws2812_parallel_wrap 3

68

69 #define ws2812_parallel_T1 2

70 #define ws2812_parallel T2 5

71 #define ws2812_parallel_T3 3

72

73 static const uint16_t ws2812_parallel_program_instructions[] = {
74 // .wrap_target

75 0x6020, // 06: out X, 32

76 oxaleb, // 1: mov pins, !null [1]

77 0xad401, // 2: mov pins, x [4]

]
3.3. Using PIOASM, the PIO Assembler 56

Raspberry Pi Pico C/C++ SDK
]

78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96

0xal1e3, // 3: mov pins, null [1]
// .wrap
%
#1if !PICO_NO_HARDWARE

static const struct pio_program ws2812_parallel_program = {
.instructions = ws2812_parallel_program_instructions,

.length = 4,
.origin = -1,
%
static inline pio_sm_config ws2812_parallel_program_get_default_config(uint offset) {

pio_sm_config ¢ = pio_get_default_sm_config();

sm_config_set_wrap(&c, offset + ws2812_parallel_wrap_target, offset +
ws2812_parallel_wrap);

return c;

#include "hardware/clocks.h"
static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint
pin_base, uint pin_count, float freq) {

97 for(uint i=pin_base; i<pin_base+pin_count; i++) {
98 pio_gpio_init(pio, 1i);
99 }
100 pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);
101 pio_sm_config ¢ = ws2812_parallel_program_get_default_config(offset);
102 sm_config_set_out_shift(&c, true, true, 32);
103 sm_config_set_out_pins(&c, pin_base, pin_count);
104 sm_config_set_set_pins(&c, pin_base, pin_count);
105 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
106 int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel_T2 + ws2812_parallel_T3;
107 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
108 sm_config_set_clkdiv(&c, div);
109 pio_sm_init(pio, sm, offset, &c);
110 pio_sm_set_enabled(pio, sm, true);
111 }
112
113 #endif
3.3.10.2. python

The python language generator produces a single python file with all the programs in the P10 source file:

The pass through sections (% python {) would be embedded in the output, and the PUBLIC defines are available as python
variables.

Also note the use of .1ang_opt python to pass initializers for the @pico.asm_pio decorator

TP

The python language output is provided as a utility. MicroPython supports programming with the PIO natively, so you
may only want to use pioasm when sharing PIO code between the SDK and MicroPython. No effort is currently made
to preserve label names, symbols or comments, as it is assumed you are either using the PIO file as a source or
python; not both. The python language output can of course be used to bootstrap your MicroPython PIO
development based on an existing PIO file.

]
3.3. Using PIOASM, the PIO Assembler 57

Raspberry Pi Pico C/C++ SDK
]

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.py

import rp2
from machine import Pin

0 N O g~ wWN =

= =
- ® O
H*
1
1
1
1
1
1
H*

ws2812_T1
ws2812_T2
ws2812_T3

= =
w N
[} 1l n

= =
[S 0

@rp2.asm_pio(sideset_init=pico.PI0.0UT_HIGH, out_init=pico.PI0.OUT_HIGH, out_shiftdir=1)
def ws2812():

=
o

17 wrap_target()

18 label("0")

19 out(x, 1) .side(@) [2] # @
20 jmp(not_x, "3") .side(1) [1] # 1
21 jmp("0") .side(1) [4] # 2
22 label("3")

23 nop() .side(@) [4] # 3
24 wrap()

25

26

27

Ay i memmmsscossssoe #

29 # ws2812_parallel #

30 # —--------m-mm - #

31

32 ws2812_parallel_T1 =

33 ws2812_parallel_T2 =

34 ws2812_parallel_T3 = 3

85

36 @rp2.asm_pio()

37 def ws2812_parallel():
38 wrap_target()
39 out(x, 32) # 0
40 mov(pins, invert(null)) [1] #1
41 mov(pins, X) [4] #2
42 mov(pins, null) [1] # 3
43 wrap()

3.3.10.3. hex

The hex generator only supports a single input program, as it just dumps the raw instructions (one per line) as a 4-
character hexadecimal number.

Given:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio

; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.

; SPDX-License-Identifier: BSD-3-Clause

g b WON =

]
3.3. Using PIOASM, the PIO Assembler 58

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.py
https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio

Raspberry Pi Pico C/C++ SDK

Table 8. PIO
instruction encoding

6

7 .program squarewave

8 set pindirs, 1
9 again:

10 set pins, 1 [1]
11 set pins, ©

12 jmp again

The hex output produces:

)
’

Set pin to output

; Drive pin low

; Set PC to label “again’

; Drive pin high and then delay for one cycle

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave.hex

1 e081
2 el@01
3 €000
4 0001

3.4. PIO Instruction Set Reference

© NOTE

This section refers in places to concepts and pieces of hardware discussed in the RP2040 Datasheet. You are
encouraged to read the PIO chapter of the datasheet to get the full context for what these instructions do.

3.4.1. Summary

P10 instructions are 16 bits long, and have the following encoding:

Bit: 15 14 13 12 11 10 9 8 7 6 5 2 1
Jup 0 0 0 Delay/side-set Condition Address

WAIT 0 0 1 Delay/side-set Pol Source Index

IN 0 1 0 Delay/side-set Source Bit count

ouT 0 1 1 Delay/side-set Destination Bit count

PUSH 0 0 Delay/side-set 0 IfF | Blk 0 0
PULL 0 0 Delay/side-set 1 IfE | Blk 0 0
Mov 0 1 Delay/side-set Destination Op Source
1RQ 1 0 Delay/side-set 0 Clr | Wait Index

SET 1 1 Delay/side-set Destination Data

All PIO instructions execute in one clock cycle.

The Delay/side-set field is present in all instructions. Its exact use is configured for each state machine by

PINCTRL_SIDESET_COUNT:

® Up to 5 MSBs encode a side-set operation, which optionally asserts a constant value onto some GPIOs,

concurrently with main instruction execution logic

® Remaining LSBs (up to 5) encode the number of idle cycles inserted between this instruction and the next

3.4. PIO Instruction Set Reference

https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave.hex
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK

3.4.2. JMP

3.4.2.1. Encoding

Bit: 15 14 13 12|11|10|9|8 7|6|5 4|3|2|1|0

P 0 0 0 Delay/side-set Condition Address

3.4.2.2. Operation

Set program counter to Address if Condition is true, otherwise no operation.

Delay cycles on a JiP always take effect, whether Condition is true or false, and they take place after Condition is
evaluated and the program counter is updated.

® Condition:
o 000: (no condition): Always
o 001: !X: scratch X zero
o 010: x--: scratch X non-zero, prior to decrement
o 011:!Y: scratch Y zero
o 100: Y--: scratch Y non-zero, prior to decrement
o 101: X!=Y: scratch X not equal scratch Y
o 110: PIN: branch on input pin
o 111: !0SRE: output shift register not empty

® Address: Instruction address to jump to. In the instruction encoding this is an absolute address within the PIO
instruction memory.

JMP PIN branches on the GPIO selected by EXECCTRL_JMP_PIN, a configuration field which selects one out of the maximum
of 32 GPIO inputs visible to a state machine, independently of the state machine’s other input mapping. The branch is
taken if the GPIO is high.

10SRE compares the bits shifted out since the last PULL with the shift count threshold configured by SHIFTCTRL_PULL_THRESH.
This is the same threshold used by autopull.

JMP X-- and JMP Y-- always decrement scratch register X or Y, respectively. The decrement is not conditional on the
current value of the scratch register. The branch is conditioned on the initial value of the register, i.e. before the
decrement took place: if the register is initially nonzero, the branch is taken.

3.4.2.3. Assembler Syntax

jmp (<cond>) <target>

where:
<cond> Is an optional condition listed above (e.g. !x for scratch X zero). If a condition code is not specified,
the branch is always taken
<target> Is a program label or value (see Section 3.3.3) representing instruction offset within the program (the

first instruction being offset 0). Note that because the PIO JMP instruction uses absolute addresses
in the PIO instruction memory, JMPs need to be adjusted based on the program load offset at
runtime. This is handled for you when loading a program with the SDK, but care should be taken when
encoding JMP instructions for use by 0UT EXEC

]
3.4. PIO Instruction Set Reference 60

Raspberry Pi Pico C/C++ SDK

3.4.3. WAIT

3.4.3.1. Encoding

Bit: 15 14 13 12|11|10|9|8 7 6 S 4|3|2|1|0

WAIT 0 0 1 Delay/side-set Pol Source Index

3.4.3.2. Operation

Stall until some condition is met.

Like all stalling instructions, delay cycles begin after the instruction completes. That is, if any delay cycles are present,
they do not begin counting until after the wait condition is met.

® Polarity:
o 1:waitforai.
o 0:wait fora0.
® Source: what to wait on. Values are:

o 00: GPI0: System GPIO input selected by Index. This is an absolute GPIO index, and is not affected by the state
machine’s input |10 mapping.

o 07:PIN: Input pin selected by Index. This state machine’s input |0 mapping is applied first, and then Index
selects which of the mapped bits to wait on. In other words, the pin is selected by adding Index to the
PINCTRL_IN_BASE configuration, modulo 32.

o 10: IRQ: PIO IRQ flag selected by Index
o 11: Reserved
* Index: which pin or bit to check.
WAIT x IRQ behaves slightly differently from other WAIT sources:
® If Polarity is 1, the selected IRQ flag is cleared by the state machine upon the wait condition being met.

® The flag index is decoded in the same way as the IRQ index field: if the MSB is set, the state machine ID (0...3) is
added to the IRQ index, by way of modulo-4 addition on the two LSBs. For example, state machine 2 with a flag
value of '0x11" will wait on flag 3, and a flag value of '0x13" will wait on flag 1. This allows multiple state machines
running the same program to synchronise with each other.

A cAuTION

WAIT 1 IRQ x should not be used with IRQ flags presented to the interrupt controller, to avoid a race condition with a
system interrupt handler

3.4.3.3. Assembler Syntax
wait <polarity> gpio <gpio_num>
wait <polarity> pin <pin_num>
wait <polarity> irq <irg_num> (rel)
where:
<polarity> Is a value (see Section 3.3.3) specifying the polarity (either 0 or 1)

]
3.4. PIO Instruction Set Reference 61

Raspberry Pi Pico C/C++ SDK
]

<pin_num> Is a value (see Section 3.3.3) specifying the input pin number (as mapped by the SM input pin
mapping)
<gpio_num> Is a value (see Section 3.3.3) specifying the actual GPIO pin number

<irg_num> (rel) s avalue (see Section 3.3.3) specifying The irq number to wait on (0-7). If rel is present, then the
actual irg number used is calculating by replacing the low two bits of the irq number (irg_num,)
with the low two bits of the sum (irg_num;, + sm_num,;) where sm_num, is the state machine
number

3.44.IN

3.4.4.1. Encoding

Bit: 15 14 13 12|11|10|9|8 7|6|5 4|3|2|1|0

N 0 1 0 Delay/side-set Source Bit count

3.4.4.2. Operation
Shift Bit count bits from Source into the Input Shift Register (ISR). Shift direction is configured for each state machine by
SHIFTCTRL_IN_SHIFTDIR. Additionally, increase the input shift count by Bit count, saturating at 32.
® Source:
o 000: PINS
o 001: X (scratch register X)
o 010: Y (scratch register Y)
o 011: NULL (all zeroes)
o 100: Reserved
o 101: Reserved
o 110: ISR
o 111:0SR
® Bit count: How many bits to shift into the ISR. 1...32 bits, 32 is encoded as 00000.

If automatic push is enabled, IN will also push the ISR contents to the RX FIFO if the push threshold is reached
(SHIFTCTRL_PUSH_THRESH). IN still executes in one cycle, whether an automatic push takes place or not. The state machine
will stall if the RX FIFO is full when an automatic push occurs. An automatic push clears the ISR contents to all-zeroes,
and clears the input shift count.

IN always uses the least significant Bit count bits of the source data. For example, if PINCTRL_IN_BASE is set to 5, the
instruction IN PINS, 3 will take the values of pins 5, 6 and 7, and shift these into the ISR. First the ISR is shifted to the left
or right to make room for the new input data, then the input data is copied into the gap this leaves. The bit order of the
input data is not dependent on the shift direction.

NULL can be used for shifting the ISR’s contents. For example, UARTs receive the LSB first, so must shift to the right.
After 8 IN PINS, 1 instructions, the input serial data will occupy bits 31...24 of the ISR. An IN NULL, 24 instruction will shift
in 24 zero bits, aligning the input data at ISR bits 7...0. Alternatively, the processor or DMA could perform a byte read
from FIFO address + 3, which would take bits 31...24 of the FIFO contents.

]
3.4. PIO Instruction Set Reference 62

Raspberry Pi Pico C/C++ SDK

3.4.4.3. Assembler Syntax

in <source>, <bit_count>

where:

<source> Is one of the sources specified above.

<bit_count> Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)
3.4.5. OUT

3.4.5.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ouT 0 1 1 Delay/side-set Destination Bit count

3.4.5.2. Operation

Shift Bit count bits out of the Output Shift Register (OSR), and write those bits to Destination. Additionally, increase the
output shift count by Bit count, saturating at 32.

® Destination:
o 000: PINS
o 001: X (scratch register X)
o 010: Y (scratch register Y)
o 011:NULL (discard data)
o 100: PINDIRS
o 101:PC
o 110: ISR (also sets ISR shift counter to Bit count)
o 111: EXEC (Execute OSR shift data as instruction)
® Bit count: how many bits to shift out of the OSR. 1...32 bits, 32 is encoded as 00000.

A 32-bit value is written to Destination: the lower Bit count bits come from the OSR, and the remainder are zeroes. This
value is the least significant Bit count bits of the OSR if SHIFTCTRL_OUT_SHIFTDIR is to the right, otherwise it is the most
significant bits.

PINS and PINDIRS use the OUT pin mapping.

If automatic pull is enabled, the OSR is automatically refilled from the TX FIFO if the pull threshold, SHIFTCTRL_PULL_THRESH,
is reached. The output shift count is simultaneously cleared to 0. In this case, the 0UT will stall if the TX FIFO is empty,
but otherwise still executes in one cycle.

0UT EXEC allows instructions to be included inline in the FIFO datastream. The 0UT itself executes on one cycle, and the
instruction from the OSR is executed on the next cycle. There are no restrictions on the types of instructions which can
be executed by this mechanism. Delay cycles on the initial 0UT are ignored, but the executee may insert delay cycles as
normal.

0UT PC behaves as an unconditional jump to an address shifted out from the OSR.

3.4. PIO Instruction Set Reference 63

Raspberry Pi Pico C/C++ SDK
]

3.4.5.3. Assembler Syntax

out <destination>, <bit_count>

where:
<destination> Is one of the destinations specified above.
<bit_count> Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)

3.4.6. PUSH

3.4.6.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUSH 1 0 0 Delay/side-set 0 IfF | Blk 0 0 0 0 0

3.4.6.2. Operation

Push the contents of the ISR into the RX FIFO, as a single 32-bit word. Clear ISR to all-zeroes.

e IfFull: If 1, do nothing unless the total input shift count has reached its threshold, SHIFTCTRL_PUSH_THRESH (the same
as for autopush).

® Block: If 1, stall execution if RX FIFO is full.

PUSH IFFULL helps to make programs more compact, like autopush. It is useful in cases where the IN would stall at an
inappropriate time if autopush were enabled, e.g. if the state machine is asserting some external control signal at this
point.

The PIO assembler sets the Block bit by default. If the Block bit is not set, the PUSH does not stall on a full RX FIFO, instead
continuing immediately to the next instruction. The FIFO state and contents are unchanged when this happens. The ISR
is still cleared to all-zeroes, and the FDEBUG_RXSTALL flag is set (the same as a blocking PUSH or autopush to a full RX FIFO)
to indicate data was lost.

3.4.6.3. Assembler Syntax

push (iffull)
push (iffull’) block

push (iffull) noblock

where:

iffull Is equivalent to IfFull == 1 above. i.e. the default if this is not specified is IfFull ==

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified
noblock Is equivalent to Block == 0 above.

3.4.7. PULL

]
3.4. PIO Instruction Set Reference 64

Raspberry Pi Pico C/C++ SDK
]

3.4.7.1. Encoding

Bit: 15 14 13 12 | 11 | 10 | 9 | 8 7 6 5 4 3 2 1 0

PULL 1 0 0 Delay/side-set 1 IfE | Blk 0 0 0 0 0

3.4.7.2. Operation

Load a 32-bit word from the TX FIFO into the OSR.

e Iftmpty: If 1, do nothing unless the total output shift count has reached its threshold, SHIFTCTRL_PULL_THRESH (the
same as for autopull).

® Block: If 1, stall if TX FIFO is empty. If 0, pulling from an empty FIFO copies scratch X to OSR.

Some peripherals (UART, SPI...) should halt when no data is available, and pick it up as it comes in; others (12S) should
clock continuously, and it is better to output placeholder or repeated data than to stop clocking. This can be achieved
with the Block parameter.

A nonblocking PULL on an empty FIFO has the same effect as MOV 0SR, X. The program can either preload scratch register
X with a suitable default, or execute a MOV X, OSR after each PULL NOBLOCK, so that the last valid FIFO word will be recycled
until new data is available.

PULL IFEMPTY is useful if an 0uT with autopull would stall in an inappropriate location when the TX FIFO is empty. For
example, a UART transmitter should not stall immediately after asserting the start bit. IfEmpty permits some of the same
program simplifications as autopull, but the stall occurs at a controlled point in the program.

© NoTE

When autopull is enabled, any PULL instruction is a no-op when the OSR is full, so that the PULL instruction behaves as
a barrier. 0UT NULL, 32 can be used to explicitly discard the OSR contents. See the RP2040 Datasheet for more detail
on autopull.

3.4.7.3. Assembler Syntax

pull (ifempty)
pull (ifempty) block

pull (ifempty) noblock

where:

ifempty Is equivalent to IfEmpty == 1 above. i.e. the default if this is not specified is IfEmpty ==

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified
noblock Is equivalent to Block == 0 above.
3.4.8. MOV

3.4.8.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mov 1 0 1 Delay/side-set Destination Op Source

]
3.4. PIO Instruction Set Reference 65

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

3.4.8.2. Operation

Copy data from Source to Destination.

® Destination:

o

000: PINS (Uses same pin mapping as 0UT)

001: X (Scratch register X)

010: Y (Scratch register Y)

011: Reserved

100: EXEC (Execute data as instruction)

101: PC

110: ISR (Input shift counter is reset to 0 by this operation, i.e. empty)

111: 0SR (Output shift counter is reset to 0 by this operation, i.e. full)

® Qperation:

o

o

]

o

00: None
01: Invert (bitwise complement)
10: Bit-reverse

11: Reserved

® Source:

o

o

000: PINS (Uses same pin mapping as IN)
001: X

010: Y

07171: NULL

100: Reserved

1071: STATUS

110: ISR

111:0SR

MOV PC causes an unconditional jump. MOV EXEC has the same behaviour as 0UT EXEC (Section 3.4.5), and allows register
contents to be executed as an instruction. The MOV itself executes in 1 cycle, and the instruction in Source on the next

cycle. Delay cycles on MOV EXEC are ignored, but the executee may insert delay cycles as normal.

The STATUS source has a value of all-ones or all-zeroes, depending on some state machine status such as FIFO
full/empty, configured by EXECCTRL_STATUS_SEL.

MOV can manipulate the transferred data in limited ways, specified by the Operation argument. Invert sets each bit in
Destination to the logical NOT of the corresponding bit in Source, i.e. 1 bits become 0 bits, and vice versa. Bit reverse sets

each bit n in Destination to bit 31 - n in Source, assuming the bits are numbered 0 to 31.

MOV dst, PINS reads pins using the IN pin mapping, and writes the full 32-bit value to the destination without masking.
The LSB of the read value is the pin indicated by PINCTRL_IN_BASE, and each successive bit comes from a higher-

numbered pin, wrapping after 31.

3.4.8.3. Assembler Syntax

mov <destination>, (op) <source>

where:

]
3.4. PIO Instruction Set Reference

66

Raspberry Pi Pico C/C++ SDK
]

<destination> Is one of the destinations specified above.

<op> If present, is:
I or ~ for NOT (Note: this is always a bitwise NOT)

:: for bit reverse

<source> Is one of the sources specified above.

3.4.9.IRQ

3.4.9.1. Encoding

Bit: 15 14 13 12|11|10|9|8 7 6 S 4|3|2|1|0

1RQ 1 1 0 Delay/side-set 0 Clr | Wait Index

3.4.9.2. Operation

Set or clear the IRQ flag selected by Index argument.
® Clear:if 1, clear the flag selected by Index, instead of raising it. If Clear is set, the Wait bit has no effect.
® Wait: if 1, halt until the raised flag is lowered again, e.g. if a system interrupt handler has acknowledged the flag.
® Index:
o The 3 LSBs specify an IRQ index from 0-7. This IRQ flag will be set/cleared depending on the Clear bit.

o If the MSB is set, the state machine ID (0...3) is added to the IRQ index, by way of modulo-4 addition on the
two LSBs. For example, state machine 2 with a flag value of 0x11 will raise flag 3, and a flag value of 0x13 will
raise flag 1.

IRQ flags 4-7 are visible only to the state machines; IRQ flags 0-3 can be routed out to system level interrupts, on either
of the PIO’s two external interrupt request lines, configured by IRQ@_INTE and IRQ1_INTE.

The modulo addition bit allows relative addressing of 'IRQ" and 'WAIT' instructions, for synchronising state machines
which are running the same program. Bit 2 (the third LSB) is unaffected by this addition.

If Wait is set, Delay cycles do not begin until after the wait period elapses.

3.4.9.3. Assembler Syntax

irq <irg_num> (rel)

irq set <irg_num> (rel)

irg nowait <irg_num> (rel)
irq wait <irg_num> (rel)
irq clear <irg_num> (rel)

where:

]
3.4. PIO Instruction Set Reference 67

Raspberry Pi Pico C/C++ SDK

<irg_num> (rel) Is a value (see Section 3.3.3) specifying The irqg number to wait on (0-7). If rel is present, then the
actual irg number used is calculating by replacing the low two bits of the irq number (irg_num,)
with the low two bits of the sum (irg_num;, + sm_num,;) where sm_num, is the state machine

number
irq Means set the IRQ without waiting
irq set Also means set the IRQ without waiting
irg nowait Again, means set the IRQ without waiting
irq wait Means set the IRQ and wait for it to be cleared before proceeding
irq clear Means clear the IRQ

3.4.10. SET

3.4.10.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET 1 1 1 Delay/side-set Destination Data

3.4.10.2. Operation

Write immediate value Data to Destination.

® Destination:
o 000: PINS
o 001: X (scratch register X) 5 LSBs are set to Data, all others cleared to 0.
o 010: Y (scratch register Y) 5 LSBs are set to Data, all others cleared to 0.
o 011: Reserved
o 100: PINDIRS
o 1071: Reserved
o 110: Reserved
o 111: Reserved

® Data: 5-bit immediate value to drive to pins or register.

This can be used to assert control signals such as a clock or chip select, or to initialise loop counters. As Data is 5 bits in
size, scratch registers can be SET to values from 0-31, which is sufficient for a 32-iteration loop.

The mapping of SET and 0UT onto pins is configured independently. They may be mapped to distinct locations, for
example if one pin is to be used as a clock signal, and another for data. They may also be overlapping ranges of pins: a
UART transmitter might use SET to assert start and stop bits, and 0UT instructions to shift out FIFO data to the same pins.

3.4.10.3. Assembler Syntax

set <destination>, <value>

where:

3.4. PIO Instruction Set Reference 68

Raspberry Pi Pico C/C++ SDK
]

<destination> Is one of the destinations specified above.

<value> The value (see Section 3.3.3) to set (valid range 0-31)

]
3.4. PIO Instruction Set Reference 69

Raspberry Pi Pico C/C++ SDK

Chapter 4. Library documentation

Full library API documentation can also be found online at https://www.raspberrypi.com/documentation/pico-sdk/

Figure 8. The

Raspberry Pi
documentation site. eee @I+ < L) raspberrypi.com e N+ @
‘ Raspberry Pi
For home For industry Hardware Software Documentation News Forums Foundation

Raspberry Pi Documentation

The official documentation for
Raspberry Pi computers and microcontrollers

Computers Accessories Microcontrollers Pico C SDK
Release 1.5.0
Introduction Hardware APIs High Level APIs
An introduction to the Pico SDK This group of libraries provides a thin and efficient This group of libraries provide higher level
C API/ abstractions to access the RP2040 functionality that isrit hardware related or provides
hardware without having to read and write aricher set of functionality above the basic
hardware registers directly hardware interfaces

O NoOTE

You can also build the API documentation locally, see Appendix E.

Chapter 4. Library documentation 70

https://www.raspberrypi.com/documentation/pico-sdk/

Raspberry Pi Pico C/C++ SDK

4.1. Hardware APIs

This group of libraries provides a thin and efficient C API / abstractions to access the RP2040 hardware without having
to read and write hardware registers directly.

hardware_adc

Analog to Digital Converter (ADC) API.

hardware_base

Low-level types and (atomic) accessors for memory-mapped hardware registers.

hardware_claim

Lightweight hardware resource management.

hardware_clocks

Clock Management API.

hardware_divider

Low-level hardware-divider access.

hardware_dma

DMA Controller API.

channel_config

DMA channel configuration.

hardware_exception

Methods for setting processor exception handlers.

hardware_flash

Low level flash programming and erase API.

hardware_gpio

General Purpose Input/Output (GPIO) API.

hardware_i2c

12C Controller API.

hardware_interp

Hardware Interpolator API.

interp_config

Interpolator configuration.

hardware_irq

Hardware interrupt handling.

hardware_pio

Programmable I/0 (PIO) API.

sm_config

P10 state machine configuration.

pio_instructions

P10 instruction encoding.

hardware_pl|

Phase Locked Loop control APIs.

hardware_pwm

Hardware Pulse Width Modulation (PWM) API.

hardware_resets

Hardware Reset API.

hardware_rtc

Hardware Real Time Clock API.

hardware_spi

Hardware SPI API.

hardware_sync

Low level hardware spin locks, barrier and processor event APIs.

hardware_timer

Low-level hardware timer API.

hardware_uart

Hardware UART API.

hardware_vreg

Voltage Regulation API.

hardware_watchdog

Hardware Watchdog Timer API.

hardware_xosc

Crystal Oscillator (XOSC) API.

4.1.1. hardware_adc

Analog to Digital Converter (ADC) API.

]
4.1. Hardware APIs

71

Raspberry Pi Pico C/C++ SDK
]

4.1.1.1. Detailed Description

The RP2040 has an internal analogue-digital converter (ADC) with the following features:
* SARADC
® 500 kS/s (Using an independent 48MHz clock)
® 12 bit (8.7 ENOB)
® 5input mux:
o 4 inputs that are available on package pins shared with GP10[29:26]

o 1inputis dedicated to the internal temperature sensor
® 4 element receive sample FIFO

® Interrupt generation

* DMA interface
Although there is only one ADC you can specify the input to it using the adc_select_input() function. In round robin mode
(adc_set_round_robin()), the ADC will use that input and move to the next one after a read.

User ADC inputs are on 0-3 (GPIO 26-29), the temperature sensor is on input 4.
Temperature sensor values can be approximated in centigrade as:
T =27 - (ADC_Voltage - 0.706)/0.001721

The FIFQ, if used, can contain up to 4 entries.

Example

1 #include <stdio.h>

2 #include "pico/stdlib.h”

3 #include "hardware/gpio.h"
4 #include "hardware/adc.h”

5]
6 int main() {
7 stdio_init_all();
8 printf("ADC Example, measuring GPI026\n");
9
10 adc_init();
11
12 // Make sure GPIO is high-impedance, no pullups etc
13 adc_gpio_init(26);
14 // Select ADC input 6 (GPI026)
15 adc_select_input(9);
16
17 while (1) {
18 // 12-bit conversion, assume max value == ADC_VREF == 3.3 V
19 const float conversion_factor = 3.3f / (1 << 12);
20 uint16_t result = adc_read();
21 printf("Raw value: 0x%03x, voltage: %f V\n", result, result * conversion_factor);
22 sleep_ms(500);
23 }
24 }

4.1.1.2. Functions

void adc_init (void)

Initialise the ADC HW.

]
4.1. Hardware APIs 72

Raspberry Pi Pico C/C++ SDK
]

static void adc_gpio_init (uint gpio)

Initialise the gpio for use as an ADC pin.

static void adc_select_input (uint input)

ADC input select.

static uint adc_get_selected_input (void)

Get the currently selected ADC input channel.

static void adc_set_round_robin (uint input_mask)

Round Robin sampling selector.

static void adc_set_temp_sensor_enabled (bool enable)

Enable the onboard temperature sensor.

static uint16_t adc_read (void)

Perform a single conversion.

static void adc_run (bool run)

Enable or disable free-running sampling mode.

static void adc_set_clkdiv (float clkdiv)

Set the ADC Clock divisor.

static void adc_fifo_setup (bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_fifo, bool byte_shift)
Setup the ADC FIFO.

static bool adc_fifo_is_empty (void)
Check FIFO empty state.

static uint8_t adc_fifo_get_level (void)

Get number of entries in the ADC FIFO.

static vint16_t adc_fifo_get (void)

Get ADC result from FIFO.

static vint16_t adc_fifo_get_blocking (void)

Wait for the ADC FIFO to have data.

static void adc_fifo_drain (void)

Drain the ADC FIFO.

static void adc_irq_set_enabled (bool enabled)

Enable/Disable ADC interrupts.

4.1.1.3. Function Documentation

4.1.1.3.1. adc_fifo_drain

static void adc_fifo_drain (void) [inline], [static]
Drain the ADC FIFO.

Will wait for any conversion to complete then drain the FIFO, discarding any results.

]
4.1. Hardware APIs 73

Raspberry Pi Pico C/C++ SDK
]

4.1.1.3.2. adc_fifo_get
static uint16_t adc_fifo_get (void) [inline], [static]
Get ADC result from FIFO.

Pops the latest result from the ADC FIFO.

4.1.1.3.3. adc_fifo_get_blocking

static uint16_t adc_fifo_get_blocking (void) [inline], [static]

Wait for the ADC FIFO to have data.

Blocks until data is present in the FIFO

4.1.1.3.4. adc_fifo_get_level
static uint8_t adc_fifo_get_level (void) [inline], [static]
Get number of entries in the ADC FIFO.

The ADC FIFO is 4 entries long. This function will return how many samples are currently present.

4.1.1.3.5. adc_fifo_is_empty

static bool adc_fifo_is_empty (void) [inline], [static]
Check FIFO empty state.

Returns

Returns true if the FIFO is empty

4.1.1.3.6. adc_fifo_setup

static void adc_fifo_setup (bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_fifo, bool byte_shift) [inline],
[static]

Setup the ADC FIFO.

FIFO is 4 samples long, if a conversion is completed and the FIFO is full, the result is dropped.

Parameters
en Enables write each conversion result to the FIFO
dreq_en Enable DMA requests when FIFO contains data

dreq_thresh Threshold for DMA requests/FIFO IRQ if enabled.

err_in_fifo If enabled, bit 15 of the FIFO contains error flag for each sample
byte_shift Shift FIFO contents to be one byte in size (for byte DMA) - enables DMA to byte buffers.
4.1.1.3.7. adc_get_selected_input

static uint adc_get_selected_input (void) [inline], [static]
Get the currently selected ADC input channel.

Returns

]
4.1. Hardware APIs 74

Raspberry Pi Pico C/C++ SDK

The currently selected input channel. 0...3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor.

4.1.1.3.8. adc_gpio_init

static void adc_gpio_init (uint gpio) [inline], [static]

Initialise the gpio for use as an ADC pin.

Prepare a GPIO for use with ADC by disabling all digital functions.
Parameters

gpio The GPIO number to use. Allowable GPIO numbers are 26 to 29 inclusive.

4.1.1.3.9. adc_init

void adc_init (void)

Initialise the ADC HW.

4.1.1.3.10. adc_irq_set_enabled

static void adc_irq_set_enabled (bool enabled) [inline], [static]
Enable/Disable ADC interrupts.

Parameters

enabled Set to true to enable the ADC interrupts, false to disable

4.1.1.3.11. adc_read

static uint16_t adc_read (void) [inline], [static]

Perform a single conversion.

Performs an ADC conversion, waits for the result, and then returns it.
Returns

Result of the conversion.

4.1.1.3.12. adc_run

static void adc_run (bool run) [inline], [static]
Enable or disable free-running sampling mode.
Parameters

run false to disable, true to enable free running conversion mode.

4.1.1.3.13. adc_select_input

static void adc_select_input (uint input) [inline], [static]

ADC input select.

Select an ADC input. 0...3 are GPI0s 26...29 respectively. Input 4 is the onboard temperature sensor.
Parameters

4.1. Hardware APIs 75

Raspberry Pi Pico C/C++ SDK
]

input Input to select.

4.1.1.3.14. adc_set_clkdiv
static void adc_set_clkdiv (float clkdiv) [inline], [static]
Set the ADC Clock divisor.

Period of samples will be (1 + div) cycles on average. Note it takes 96 cycles to perform a conversion, so any period less
than that will be clamped to 96.

Parameters

clkdiv If non-zero, conversion will be started at intervals rather than back to back.

4.1.1.3.15. adc_set_round_robin
static void adc_set_round_robin (uint input_mask) [inline], [static]
Round Robin sampling selector.

This function sets which inputs are to be run through in round robin mode. Value between 0 and 0x1f (bit 0 to bit 4 for
GPIO 26 to 29 and temperature sensor input respectively)

Parameters

input_mask A bit pattern indicating which of the 5 inputs are to be sampled. Write a value of 0 to disable round
robin sampling.

4.1.1.3.16. adc_set_temp_sensor_enabled

static void adc_set_temp_sensor_enabled (bool enable) [inline], [static]
Enable the onboard temperature sensor.
Parameters

enable Set true to power on the onboard temperature sensor, false to power off.

4.1.2. hardware_base

Low-level types and (atomic) accessors for memory-mapped hardware registers.

4.1.2.1. Detailed Description

hardware_base defines the low level types and access functions for memory mapped hardware registers. It is included by
default by all other hardware libraries.

The following register access typedefs codify the access type (read/write) and the bus size (8/16/32) of the hardware
register. The register type names are formed by concatenating one from each of the 3 parts A, B, C

A B C Meaning
io_ A Memory mapped 10
register
ro_ read-only access
rw_ read-write access

]
4.1. Hardware APIs 76

Raspberry Pi Pico C/C++ SDK
]

A B C Meaning
wo_ write-only access (can’t
actually be enforced via C
API)
8 8-bit wide access
16 16-bit wide access
32 32-bit wide access

When dealing with these types, you will always use a pointer, i.e. io_rw_32 *some_reg is @ pointer to a read/write 32 bit
register that you can write with *some_reg = value, or read with value = *some_reg.

RP2040 hardware is also aliased to provide atomic setting, clear or flipping of a subset of the bits within a hardware
register so that concurrent access by two cores is always consistent with one atomic operation being performed first,
followed by the second.

See hw_set_bits(), hw_clear_bits() and hw_xor_bits() provide for atomic access via a pointer to a 32 bit register

Additionally given a pointer to a structure representing a piece of hardware (e.g. dna_hu_t *dma_hw for the DMA controller),
you can get an alias to the entire structure such that writing any member (register) within the structure is equivalent to
an atomic operation via hw_set_alias(), hw_clear_alias() or hw_xor_alias()...

For example hw_set_alias(dma_hw)->inte1l = 0x80; will set bit 7 of the INTE1 register of the DMA controller, leaving the
other bits unchanged.

4.1.2.2. Functions
static __force_inline void hw_set_bits (io_rw_32 *addr, uint32_t mask)
Atomically set the specified bits to 1 in a HW register.

static __force_inline void hw_clear_bits (io_rw_32 *addr, uint32_t mask)

Atomically clear the specified bits to 0 in a HW register.

static __force_inline void hw_xor_bits (io_rw_32 *addr, uint32_t mask)

Atomically flip the specified bits in a HW register.

static __force_inline void hw_write_masked (io_rw_32 *addr, uint32_t values, uint32_t write_mask)

Set new values for a sub-set of the bits in a HW register.

4.1.2.3. Function Documentation

4.1.2.3.1. hw_clear_bits

static __force_inline void hw_clear_bits (io_rw_32 * addr, uint32_t mask) [static]

Atomically clear the specified bits to 0 in a HW register.

Parameters
addr Address of writable register
mask Bit-mask specifying bits to clear

]
4.1. Hardware APIs 77

Raspberry Pi Pico C/C++ SDK

4.1.2.3.2. hw_set_bits
static __force_inline void hw_set_bits (io_rw_32 * addr, uint32_t mask) [static]
Atomically set the specified bits to 1 in a HW register.
Parameters
addr Address of writable register

mask Bit-mask specifying bits to set

4.1.2.3.3. hw_write_masked

static __force_inline void hw_write_masked (io_rw_32 * addr, uint32_t values, uint32_t write_mask) [static]
Set new values for a sub-set of the bits in a HW register.

Sets destination bits to values specified in values, if and only if corresponding bit in write_mask is set

Note: this method allows safe concurrent modification of different bits of a register, but multiple concurrent access to
the same bits is still unsafe.

Parameters
addr Address of writable register
values Bits values
write_mask Mask of bits to change

4.1.2.3.4. hw_xor_bits

static __force_inline void hw_xor_bits (io_rw_32 * addr, uint32_t mask) [static]

Atomically flip the specified bits in a HW register.

Parameters
addr Address of writable register
mask Bit-mask specifying bits to invert

4.1.3. hardware_claim

Lightweight hardware resource management.

4.1.3.1. Detailed Description

hardware_claim provides a simple API for management of hardware resources at runtime.

This API is usually called by other hardware specific claiming APIs and provides simple multi-core safe methods to
manipulate compact bit-sets representing hardware resources.

This API allows any other library to cooperatively participate in a scheme by which both compile time and runtime
allocation of resources can co-exist, and conflicts can be avoided or detected (depending on the use case) without the
libraries having any other knowledge of each other.

Facilities are providing for:

1. Claiming resources (and asserting if they are already claimed)

4.1. Hardware APIs 78

Raspberry Pi Pico C/C++ SDK
]

2. Freeing (unclaiming) resources

3. Finding unused resources

4.1.3.2. Functions

void hw_claim_or_assert (uint8_t *bits, uint bit_index, const char *message)

Atomically claim a resource, panicking if it is already in use.

int hw_claim_unused_from_range (uint8_t *bits, bool required, uint bit_1lsb, uint bit_msb, const char *message)

Atomically claim one resource out of a range of resources, optionally asserting if none are free.

bool hw_is_claimed (const uint8_t *bits, uint bit_index)

Determine if a resource is claimed at the time of the call.

void hw_claim_clear (uint8_t *bits, uint bit_index)

Atomically unclaim a resource.

uint32_t hw_claim_lock (void)

Acquire the runtime mutual exclusion lock provided by the hardware_claim library.

void hw_claim_unlock (uint32_t token)

Release the runtime mutual exclusion lock provided by the hardware_claim library.

4.1.3.3. Function Documentation

4.1.3.3.1. hw_claim_clear
void hw_claim_clear (uint8_t * bits, uint bit_index)
Atomically unclaim a resource.

The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters
bits pointer to an array of bits (8 bits per byte)
bit_index resource to unclaim (bit index into array of bits)
4.1.3.3.2. hw_claim_lock

uint32_t hw_claim_lock (void)
Acquire the runtime mutual exclusion lock provided by the hardware_claim library.

This method is called automatically by the other hu_claim_ methods, however it is provided as a convenience to code
that might want to protect other hardware initialization code from concurrent use.

O NoOTE

hw_claim_lock() uses a spin lock internally, so disables interrupts on the calling core, and will deadlock if the calling
core already owns the lock.

Returns

a token to pass to hw_claim_unlock()

]
4.1. Hardware APIs 79

Raspberry Pi Pico C/C++ SDK
]

4.1.3.3.3. hw_claim_or_assert
void hw_claim_or_assert (uint8_t * bits, uint bit_index, const char * message)
Atomically claim a resource, panicking if it is already in use.

The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters
bits pointer to an array of bits (8 bits per byte)
bit_index resource to claim (bit index into array of bits)
message string to display if the bit cannot be claimed; note this may have a single printf format "%d" for the
bit
4.1.3.3.4. hw_claim_unlock

void hw_claim_unlock (uint32_t token)

Release the runtime mutual exclusion lock provided by the hardware_claim library.

O NoTE

This method MUST be called from the same core that call hw_claim_lock()

Parameters

token the token returned by the corresponding call to hw_claim_lock()

4.1.3.3.5. hw_claim_unused_from_range

int hw_claim_unused_from_range (uint8_t * bits, bool required, uint bit_lsb, uint bit_msb, const char * message)

Atomically claim one resource out of a range of resources, optionally asserting if none are free.

Parameters
bits pointer to an array of bits (8 bits per byte)
required true if this method should panic if the resource is not free
bit_lsb the lower bound (inclusive) of the resource range to claim from
bit_msb the upper bound (inclusive) of the resource range to claim from
message string to display if the bit cannot be claimed

Returns

the bit index representing the claimed or -1 if none are available in the range, and required = false

4.1.3.3.6. hw_is_claimed
bool hw_is_claimed (const uint8_t * bits, uint bit_index) [inline]
Determine if a resource is claimed at the time of the call.

The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters
bits pointer to an array of bits (8 bits per byte)
bit_index resource to check (bit index into array of bits)

]
4.1. Hardware APIs 80

Raspberry Pi Pico C/C++ SDK

Returns

true if the resource is claimed

4.1.4. hardware_clocks

Clock Management API.

4.1.4.1. Detailed Description

This API provides a high level interface to the clock functions.

The clocks block provides independent clocks to on-chip and external components. It takes inputs from a variety of
clock sources allowing the user to trade off performance against cost, board area and power consumption. From these
sources it uses multiple clock generators to provide the required clocks. This architecture allows the user flexibility to
start and stop clocks independently and to vary some clock frequencies whilst maintaining others at their optimum
frequencies

Please refer to the datasheet for more details on the RP2040 clocks.

The clock source depends on which clock you are attempting to configure. The first table below shows main clock
sources. If you are not setting the Reference clock or the System clock, or you are specifying that one of those two will
be using an auxiliary clock source, then you will need to use one of the entries from the subsequent tables.

Main Clock Sources

Source Reference Clock System Clock

ROSC CLOCKS_CLK_REF_CTRL_SRC_VALUE
_ROSC_CLKSRC_PH

Auxiliary CLOCKS_CLK_REF_CTRL_SRC_VALUE | CLOCKS_CLK_SYS_CTRL_SRC_VALUE
_CLKSRC_CLK_REF_AUX _CLKSRC_CLK_SYS_AUX

X0SC CLOCKS_CLK_REF_CTRL_SRC_VALUE
_XOSC_CLKSRC

Reference CLOCKS_CLK_SYS_CTRL_SRC_VALUE

_CLK_REF

Auxiliary Clock Sources

The auxiliary clock sources available for use in the configure function depend on which clock is being configured. The
following table describes the available values that can be used. Note that for clk_gpout[x], x can be 0-3.

Aux Source clk_gpout|x] clk_ref clk_sys

System PLL CLOCKS_CLK_GPOUTx_CTR CLOCKS_CLK_SYS_CTRL_A
L_AUXSRC_VALUE_CLKSRC UXSRC_VALUE_CLKSRC_PL
_PLL_SYS L_SYS

GPIOin0 CLOCKS_CLK_GPOUTX_CTR | CLOCKS_CLK_REF_CTRL_A |CLOCKS_CLK_SYS_CTRL_A
L_AUXSRC_VALUE_CLKSRC | UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP
_GPINO INO INO

GPIOin 1 CLOCKS_CLK_GPOUTX_CTR | CLOCKS_CLK_REF_CTRL_A | CLOCKS_CLK_SYS_CTRL_A
L_AUXSRC_VALUE_CLKSRC | UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP
_GPIN1 IN1 IN1

4.1. Hardware APIs

81

Raspberry Pi Pico C/C++ SDK

Aux Source

clk_gpoutx]

clk_ref

clk_sys

USB PLL

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLKSRC
_PLL_USB

CLOCKS_CLK_REF_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_USB

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_USB

ROSC

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_ROSC_C
LKSRC

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_ROSC_CLKS
RC

X0SC

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_XOSC_C
LKSRC

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_ROSC_CLKS
RC

System clock

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_SY
S

USB Clock

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_US
B

ADC clock

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_AD
C

RTC Clock

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_RT
C

Ref clock

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_RE
F

Aux Source

clk_peri

clk_usb

clk_adc

System PLL

CLOCKS_CLK_PERI_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_SYS

CLOCKS_CLK_USB_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_SYS

CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_SYS

GPIOinO

CLOCKS_CLK_PERI_CTRL_A
UXSRC_VALUE_CLKSRC_GP
INO

CLOCKS_CLK_USB_CTRL_A
UXSRC_VALUE_CLKSRC_GP
INO

CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_GP
INO

GPIOin 1

CLOCKS_CLK_PERI_CTRL_A
UXSRC_VALUE_CLKSRC_GP
IN1

CLOCKS_CLK_USB_CTRL_A
UXSRC_VALUE_CLKSRC_GP
IN1

CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_GP
IN1

USB PLL

CLOCKS_CLK_PERI_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_USB

CLOCKS_CLK_USB_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_USB

CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_USB

ROSC

CLOCKS_CLK_PERI_CTRL_A
UXSRC_VALUE_ROSC_CLKS
RC_PH

CLOCKS_CLK_USB_CTRL_A
UXSRC_VALUE_ROSC_CLKS
RC_PH

CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_ROSC_CLKS
RC_PH

X0SC

CLOCKS_CLK_PERI_CTRL_A
UXSRC_VALUE_XOSC_CLKS
RC

CLOCKS_CLK_USB_CTRL_A
UXSRC_VALUE_XOSC_CLKS
RC

CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_XOSC_CLKS
RC

System clock

CLOCKS_CLK_PERI_CTRL_A
UXSRC_VALUE_CLK_SYS

4.1. Hardware APIs

82

Raspberry Pi Pico C/C++ SDK
]

Aux Source clk_rtc
System PLL CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_
SYS
GPIOin0 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN
0
GPIOin 1 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN
1
USB PLL CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_
USB
ROSC CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_ROSC_CLKSR
C_PH
X0SC CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_XOSC_CLKSR
C
Example
1 #include <stdio.h>
2 #include "pico/stdlib.h"
3 #include "hardware/pll.h"
4 #include "hardware/clocks.h”
5 #include "hardware/structs/pll.h"
6 #include "hardware/structs/clocks.h”
7
8 void measure_freqgs(void) {
9 uint f_pll_sys = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_PLL_SYS_CLKSRC_PRIMARY);
10 uint f_pll_usb = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_PLL_USB_CLKSRC_PRIMARY);
11 uint f_rosc = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_ROSC_CLKSRC) ;
12 uint f_clk_sys = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_SYS);
13 uint f_clk_peri = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_PERI);
14 uint f_clk_usb = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_USB);
15 uint f_clk_adc = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_ADC) ;
16 uint f_clk_rtc = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_RTC);
17
18 printf("pll_sys = %dkHz\n", f_pll_sys);
19 printf("pll_usb = %dkHz\n", f_pll_usb);
20 printf("rosc = %dkHz\n", f_rosc);
21 printf(“clk_sys = %dkHz\n", f_clk_sys);
22 printf("clk_peri = %dkHz\n", f_clk_peri);
23 printf(“clk_usb = %dkHz\n", f_clk_usb);
24 printf("clk_adc = %dkHz\n", f_clk_adc);
25 printf("clk_rtc = %dkHz\n", f_clk_rtc);
26
27 // Can't measure clk_ref / xosc as it is the ref
28 }
29
30 int main() {
31 stdio_init_all();
32
33 printf("Hello, world!\n");
34
35 measure_freqs();
36
37 // Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB
38 // which has a source frequency of 48MHz
39 clock_configure(clk_sys,
40 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
41 CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,

]
4.1. Hardware APIs 83

Raspberry Pi Pico C/C++ SDK
]

42 48 * MHZ,
43 48 * MHZ);
44
45 // Turn off PLL sys for good measure
46 pll_deinit(pll_sys);
47
48 // CLK peri is clocked from clk_sys so need to change clk_peri's freq
49 clock_configure(clk_peri,
50 9,
51 CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,
52 48 * MHZ,
53 48 * MHZ);
54
55 // Re init uart now that clk_peri has changed
56 stdio_init_all();
57
58 measure_freqs() ;
59 printf("Hello, 48MHz");
60
61 return 0;
62 }
4.1.4.2. Typedefs

typedef void(* resus_callback_t)(void)

Resus callback function type.

4.1.4.3. Enumerations

enum clock_index { clk_gpout® = @, clk_gpout1, clk_gpout2, clk_gpout3, clk_ref, clk_sys, clk_peri, clk_usb, clk_adc,
clk_rte, CLK_COUNT }

Enumeration identifying a hardware clock.

4.1.4.4. Functions

void clocks_init (void)
Initialise the clock hardware.

bool clock_configure (enum clock_index clk_index, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq)
Configure the specified clock.

void clock_stop (enum clock_index clk_index)
Stop the specified clock.

uint32_t clock_get_hz (enum clock_index clk_index)

Get the current frequency of the specified clock.

uint32_t frequency_count_khz (uint src)

Measure a clocks frequency using the Frequency counter.

void clock_set_reported_hz (enum clock_index clk_index, uint hz)

Set the "current frequency" of the clock as reported by clock_get_hz without actually changing the clock.

void clocks_enable_resus (resus_callback_t resus_callback)

Enable the resus function. Restarts clk_sys if it is accidentally stopped.

]
4.1. Hardware APIs 84

Raspberry Pi Pico C/C++ SDK

void clock_gpio_init_int_frac (uint gpio, uint src, uint32_t div_int, uint8_t div_frac)

Output an optionally divided clock to the specified gpio pin.

static void clock_gpio_init (uint gpio, uint src, float div)

Output an optionally divided clock to the specified gpio pin.

bool clock_configure_gpin (enum clock_index clk_index, uint gpio, uint32_t src_freq, uint32_t freq)

Configure a clock to come from a gpio input.

4.1.4.5. Typedef Documentation

4.1.4.5.1. resus_callback_t

typedef void(* resus_callback_t) (void)
Resus callback function type.

User provided callback for a resus event (when clk_sys is stopped by the programmer and is restarted for them).

4.1.4.6. Enumeration Type Documentation

4.1.4.6.1. clock_index

enum clock_index

Enumeration identifying a hardware clock.

Table 9. Enumerator

GPIO Muxing 0.

GPIO Muxing 1.

GPIO Muxing 2.

GPIO Muxing 3.

Watchdog and timers reference clock.

Processors, bus fabric, memory, memory mapped
registers.

Peripheral clock for UART and SPI.

USB clock.

ADC clock.

Real time clock.

4.1.4.7. Function Documentation

4.1.4.7.1. clock_configure
bool clock_configure (enum clock_index clk_index, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq)
Configure the specified clock.

See the tables in the description for details on the possible values for clock sources.

4.1. Hardware APIs 85

Raspberry Pi Pico C/C++ SDK

Parameters
clk_index The clock to configure
sre The main clock source, can be 0.
auxsre The auxiliary clock source, which depends on which clock is being set. Can be 0
src_freq Frequency of the input clock source
freq Requested frequency
4.1.4.7.2. clock_configure_gpin

bool clock_configure_gpin (enum clock_index clk_index, uint gpio, uint32_t src_freq, uint32_t freq)

Configure a clock to come from a gpio input.

Parameters
clk_index The clock to configure
gpio The GPIO pin to run the clock from. Valid GPIOs are: 20 and 22.
src_freq Frequency of the input clock source
freq Requested frequency
4.1.4.7.3. clock_get_hz

uint32_t clock_get_hz (enum clock_index clk_index)
Get the current frequency of the specified clock.
Parameters

clk_index Clock
Returns

Clock frequency in Hz

4.1.4.7.4. clock_gpio_init

static void clock_gpio_init (uint gpio, uint src, float div) [inline], [static]
Output an optionally divided clock to the specified gpio pin.

Parameters

gpio The GPIO pin to output the clock to. Valid GPIOs are: 21, 23, 24, 25. These GPIOs are connected to the
GPOUTO-3 clock generators.

sre The source clock. See the register field CLOCKS_CLK_GPOUTO_CTRL_AUXSRC for a full list. The list is
the same for each GPOUT clock generator.
div The float amount to divide the source clock by. This is useful to not overwhelm the GPIO pin with a fast
clock.
4.1.4.7.5. clock_gpio_init_int_frac

void clock_gpio_init_int_frac (uint gpio, uint src, uint32_t div_int, uint8_t div_frac)

Output an optionally divided clock to the specified gpio pin.

4.1. Hardware APIs 86

Raspberry Pi Pico C/C++ SDK

Parameters
gpio The GPIO pin to output the clock to. Valid GPIOs are: 21, 23, 24, 25. These GPIOs are connected to
the GPOUTO-3 clock generators.
src The source clock. See the register field CLOCKS_CLK_GPOUTO_CTRL_AUXSRC for a full list. The list
is the same for each GPOUT clock generator.
div_int The integer part of the value to divide the source clock by. This is useful to not overwhelm the GPIO

pin with a fast clock. this is in range of 1..2*24-1.

div_frac The fractional part of the value to divide the source clock by. This is in range of 0..255 (/256).

4.1.4.7.6. clock_set_reported_hz

void clock_set_reported_hz (enum clock_index clk_index, uint hz)

Set the "current frequency" of the clock as reported by clock_get_hz without actually changing the clock.
See also

clock_get_hz()

4.1.4.7.7. clock_stop

void clock_stop (enum clock_index clk_index)
Stop the specified clock.

Parameters

clk_index The clock to stop

4.1.4.7.8. clocks_enable_resus
void clocks_enable_resus (resus_callback_t resus_callback)
Enable the resus function. Restarts clk_sys if it is accidentally stopped.

The resuscitate function will restart the system clock if it falls below a certain speed (or stops). This could happen if the
clock source the system clock is running from stops. For example if a PLL is stopped.

Parameters

resus_callback a function pointer provided by the user to call if a resus event happens.

4.1.4.7.9. clocks_init
void clocks_init (void)
Initialise the clock hardware.

Must be called before any other clock function.

4.1.4.7.10. frequency_count_khz

uint32_t frequency_count_khz (uint src)
Measure a clocks frequency using the Frequency counter.

Uses the inbuilt frequency counter to measure the specified clocks frequency. Currently, this function is accurate to +-
1KHz. See the datasheet for more details.

4.1. Hardware APIs 87

Raspberry Pi Pico C/C++ SDK
]

4.1.5. hardware_divider

Low-level hardware-divider access.

4.1.5.1. Detailed Description

The SIO contains an 8-cycle signed/unsigned divide/modulo circuit, per core. Calculation is started by writing a dividend
and divisor to the two argument registers, DIVIDEND and DIVISOR. The divider calculates the quotient / and remainder %
of this division over the next 8 cycles, and on the 9th cycle the results can be read from the two result registers
DIV_QUOTIENT and DIV_REMAINDER. A 'ready' bit in register DIV_CSR can be polled to wait for the calculation to
complete, or software can insert a fixed 8-cycle delay

This header provides low level macros and inline functions for accessing the hardware dividers directly, and perhaps
most usefully performing asynchronous divides. These functions however do not follow the regular SDK conventions for
saving/restoring the divider state, so are not generally safe to call from interrupt handlers

The pico_divider library provides a more user friendly set of APIs over the divider (and support for 64 bit divides), and of
course by default regular C language integer divisions are redirected through that library, meaning you can just use C
level / and % operators and gain the benefits of the fast hardware divider.

See also

pico_divider

Example

1 #include <stdio.h>
2 #include "pico/stdlib.h”
3 #include "hardware/divider.h"

4
5 int main() {
6 stdio_init_all();
7 printf("Hello, divider!\n");
8
9 // This is the basic hardware divider function
10 int32_t dividend = 123456;
11 int32_t divisor = -321;
12 divmod_result_t result = hw_divider_divmod_s32(dividend, divisor);
13
14 printf("%d/%d = %d remainder %d\n", dividend, divisor, to_quotient_s32(result),
to_remainder_s32(result));
15
16 // Is it right?
17
18 printf("Working backwards! Result %d should equal %d!\n\n"
19 to_quotient_s32(result) * divisor + to_remainder_s32(result), dividend);
20
21 // This is the recommended unsigned fast divider for general use.
22 int32_t udividend = 123456;
23 int32_t udivisor = 321;
24 divmod_result_t uresult = hw_divider_divmod_u32(udividend, udivisor);
25
26 printf("%d/%d = %d remainder %d\n", udividend, udivisor, to_quotient_u32(uresult),
to_remainder_u32(uresult));
27
28 // Is it right?
29
30 printf("Working backwards! Result %d should equal %d!\n\n"
31 to_quotient_u32(result) * divisor + to_remainder_u32(result), dividend);
32
33 // You can also do divides asynchronously. Divides will be complete after 8 cycles.

]
4.1. Hardware APIs 88

Raspberry Pi Pico C/C++ SDK
]

34

35 hw_divider_divmod_s32_start(dividend, divisor);

36

37 // Do something for 8 cycles!

38

39 // In this example, our results function will wait for completion.

40 // Use hw_divider_result_nowait() if you don't want to wait, but are sure you have delayed
at least 8 cycles

41

42 result = hw_divider_result_wait();

43

44 printf("Async result %d/%d = %d remainder %d\n", dividend, divisor, to_quotient_s32
(result),

45 to_remainder_s32(result));

46

47 // For a really fast divide, you can use the inlined versions... the / involves a function
call as / always does

48 // when using the ARM AEABI, so if you really want the best performance use the inlined
versions.

49 // Note that the / operator function DOES use the hardware divider by default, although you
can change

50 // that behavior by calling pico_set_divider_implementation in the cmake build for your
target.

51 printf("%d / %d = (by operator %d) (inlined %d)\n", dividend, divisor,

52 dividend / divisor, hw_divider_s32_quotient_inlined(dividend, divisor));

53

54 // Note however you must manually save/restore the divider state if you call the inlined
methods from within an IRQ

55 // handler.

56 hw_divider_state_t state;

57 hw_divider_divmod_s32_start(dividend, divisor);

58 hw_divider_save_state(&state);

59

60 hw_divider_divmod_s32_start(123, 7);

61 printf("inner %d / %d = %d\n", 123, 7, hw_divider_s32_quotient_wait());

62

63 hw_divider_restore_state(&state);

64 int32_t tmp = hw_divider_s32_quotient_wait();

65 printf("outer divide %d / %d = %d\n", dividend, divisor, tmp);

66 return 0;

67 }

4.1.5.2. Functions

static void hw_divider_divmod_s32_start (int32_t a, int32_t b)
Start a signed asynchronous divide.

static void hw_divider_divmod_u32_start (uint32_t a, uint32_t b)
Start an unsigned asynchronous divide.

static void hw_divider_wait_ready (void)
Wait for a divide to complete.

static divmod_result_t hw_divider_result_nowait (void)

Return result of HW divide, nowait.

static divmod_result_t hw_divider_result_wait (void)

Return result of last asynchronous HW divide.

]
4.1. Hardware APIs 89

Raspberry Pi Pico C/C++ SDK
]

static uint32_t hw_divider_u32_quotient_wait (void)

Return result of last asynchronous HW divide, unsigned quotient only.
static int32_t hw_divider_s32_quotient_wait (void)

Return result of last asynchronous HW divide, signed quotient only.

static uint32_t hw_divider_u32_remainder_wait (void)

Return result of last asynchronous HW divide, unsigned remainder only.

static int32_t hw_divider_s32_remainder_wait (void)

Return result of last asynchronous HW divide, signed remainder only.
divmod_result_t hw_divider_divmod_s32 (int32_t a, int32_t b)

Do a signed HW divide and wait for result.
divmod_result_t hw_divider_divmod_u32 (uint32_t a, uint32_t b)

Do an unsigned HW divide and wait for result.
static vint32_t to_quotient_u32 (divmod_result_t r)

Efficient extraction of unsigned quotient from 32p32 fixed point.
static int32_t to_quotient_s32 (divmod_result_t r)

Efficient extraction of signed quotient from 32p32 fixed point.
static uint32_t to_remainder_u32 (divmod_result_t r)

Efficient extraction of unsigned remainder from 32p32 fixed point.
static int32_t to_remainder_s32 (divmod_result_t r)

Efficient extraction of signed remainder from 32p32 fixed point.
static vint32_t hw_divider_u32_quotient (uint32_t a, uint32_t b)

Do an unsigned HW divide, wait for result, return quotient.
static uint32_t hw_divider_u32_remainder (uint32_t a, uint32_t b)

Do an unsigned HW divide, wait for result, return remainder.
static int32_t hw_divider_quotient_s32 (int32_t a, int32_t b)

Do a signed HW divide, wait for result, return quotient.
static int32_t hw_divider_remainder_s32 (int32_t a, int32_t b)

Do a signed HW divide, wait for result, return remainder.
static void hw_divider_pause (void)

Pause for exact amount of time needed for a asynchronous divide to complete.
static vint32_t hw_divider_u32_quotient_inlined (uint32_t a, uint32_t b)

Do a hardware unsigned HW divide, wait for result, return quotient.
static uint32_t hw_divider_u32_remainder_inlined (uint32_t a, uint32_t b)

Do a hardware unsigned HW divide, wait for result, return remainder.
static int32_t hw_divider_s32_quotient_inlined (int32_t a, int32_t b)

Do a hardware signed HW divide, wait for result, return quotient.
static int32_t hw_divider_s32_remainder_inlined (int32_t a, int32_t b)

Do a hardware signed HW divide, wait for result, return remainder.
void hw_divider_save_state (hw_divider_state_t *dest)

Save the calling cores hardware divider state.

]
4.1. Hardware APIs 20

Raspberry Pi Pico C/C++ SDK
]

void hw_divider_restore_state (hw_divider_state_t *src)

Load a saved hardware divider state into the current core’s hardware divider.

4.1.5.3. Function Documentation

4.1.5.3.1. hw_divider_divmod_s32
divmod_result_t hw_divider_divmod_s32 (int32_t a, int32_t b)
Do a signed HW divide and wait for result.
Divide a by b, wait for calculation to complete, return result as a pair of 32-bit quotient/remainder values.
Parameters
a The dividend
b The divisor
Returns

Results of divide as a pair of 32-bit quotient/remainder values.

4.1.5.3.2. hw_divider_divmod_s32_start
static void hw_divider_divmod_s32_start (int32_t a, int32_t b) [inline], [static]
Start a signed asynchronous divide.

Start a divide of the specified signed parameters. You should wait for 8 cycles (__div_pause()) or wait for the ready bit to
be set (hw_divider_wait_ready()) prior to reading the results.

Parameters
a The dividend

b The divisor

4.1.5.3.3. hw_divider_divmod_u32
divmod_result_t hw_divider_divmod_u32 (uint32_t a, uint32_t b)
Do an unsigned HW divide and wait for result.
Divide a by b, wait for calculation to complete, return result as a pair of 32-bit quotient/remainder values.
Parameters
a The dividend
b The divisor
Returns

Results of divide as a pair of 32-bit quotient/remainder values.

4.1.5.3.4. hw_divider_divmod_u32_start

static void hw_divider_divmod_u32_start (uint32_t a, uint32_t b) [inline], [static]

Start an unsigned asynchronous divide.

]
4.1. Hardware APIs 91

Raspberry Pi Pico C/C++ SDK

Start a divide of the specified unsigned parameters. You should wait for 8 cycles (__div_pause()) or wait for the ready bit
to be set (hw_divider_wait_ready()) prior to reading the results.

Parameters
a The dividend

b The divisor

4.1.5.3.5. hw_divider_pause

static void hw_divider_pause (void) [inline], [static]

Pause for exact amount of time needed for a asynchronous divide to complete.

4.1.5.3.6. hw_divider_quotient_s32
static int32_t hw_divider_quotient_s32 (int32_t a, int32_t b) [inline], [static]
Do a signed HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters
a The dividend
b The divisor
Returns

Quotient results of the divide

4.1.5.3.7. hw_divider_remainder_s32
static int32_t hw_divider_remainder_s32 (int32_t a, int32_t b) [inline], [static]
Do a signed HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters
a The dividend
b The divisor
Returns

Remainder results of the divide

4.1.5.3.8. hw_divider_restore_state

void hw_divider_restore_state (hw_divider_state_t * src)

Load a saved hardware divider state into the current core’s hardware divider.
Copy the passed hardware divider state into the hardware divider.
Parameters

src the location to load the divider state from

4.1. Hardware APIs 92

Raspberry Pi Pico C/C++ SDK

4.1.5.3.9. hw_divider_result_nowait

static divmod_result_t hw_divider_result_nowait (void) [inline], [static]

Return result of HW divide, nowait.

© NOTE

This is UNSAFE in that the calculation may not have been completed.

Returns

Current result. Most significant 32 bits are the remainder, lower 32 bits are the quotient.

4.1.5.3.10. hw_divider_result_wait

static divmod_result_t hw_divider_result_wait (void) [inline], [static]

Return result of last asynchronous HW divide.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current result. Most significant 32 bits are the remainder, lower 32 bits are the quotient.

4.1.5.3.11. hw_divider_s32_quotient_inlined
static int32_t hw_divider_s32_quotient_inlined (int32_t a, int32_t b) [inline], [static]
Do a hardware signed HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters
a The dividend
b The divisor
Returns

Quotient result of the divide

4.1.5.3.12. hw_divider_s32_quotient_wait

static int32_t hw_divider_s32_quotient_wait (void) [inline], [static]

Return result of last asynchronous HW divide, signed quotient only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current signed quotient result.

4.1.5.3.13. hw_divider_s32_remainder_inlined
static int32_t hw_divider_s32_remainder_inlined (int32_t a, int32_t b) [inline], [static]
Do a hardware signed HW divide, wait for result, return remainder.

Divide a by b, wait for calculation to complete, return remainder.

4.1. Hardware APIs 93

Raspberry Pi Pico C/C++ SDK
]

Parameters
a The dividend
b The divisor
Returns

Remainder result of the divide

4.1.5.3.14. hw_divider_s32_remainder_wait

static int32_t hw_divider_s32_remainder_wait (void) [inline], [static]

Return result of last asynchronous HW divide, signed remainder only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current remainder results.

4.1.5.3.15. hw_divider_save_state
void hw_divider_save_state (hw_divider_state_t * dest)
Save the calling cores hardware divider state.

Copy the current core’s hardware divider state into the provided structure. This method waits for the divider results to
be stable, then copies them to memory. They can be restored via hw_divider_restore_state()

Parameters

dest the location to store the divider state

4.1.5.3.16. hw_divider_u32_quotient

static uint32_t hw_divider_u32_quotient (uint32_t a, uint32_t b) [inline], [static]
Do an unsigned HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters
a The dividend
b The divisor
Returns

Quotient results of the divide

4.1.5.3.17. hw_divider_u32_quotient_inlined

static uint32_t hw_divider_u32_quotient_inlined (uint32_t a, uint32_t b) [inline], [static]
Do a hardware unsigned HW divide, wait for result, return quotient.

Divide a by b, wait for calculation to complete, return quotient.

Parameters

a The dividend

]
4.1. Hardware APIs 94

Raspberry Pi Pico C/C++ SDK
]

b The divisor
Returns

Quotient result of the divide

4.1.5.3.18. hw_divider_u32_quotient_wait

static uint32_t hw_divider_u32_quotient_wait (void) [inline], [static]

Return result of last asynchronous HW divide, unsigned quotient only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current unsigned quotient result.

4.1.5.3.19. hw_divider_u32_remainder
static uint32_t hw_divider_u32_remainder (uint32_t a, uint32_t b) [inline], [static]
Do an unsigned HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters
a The dividend
b The divisor
Returns

Remainder results of the divide

4.1.5.3.20. hw_divider_u32_remainder_inlined

static uint32_t hw_divider_u32_remainder_inlined (uint32_t a, uint32_t b) [inline], [static]
Do a hardware unsigned HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters
a The dividend
b The divisor
Returns

Remainder result of the divide

4.1.5.3.21. hw_divider_u32_remainder_wait

static uint32_t hw_divider_u32_remainder_wait (void) [inline], [static]

Return result of last asynchronous HW divide, unsigned remainder only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current unsigned remainder result.

]
4.1. Hardware APIs 95

Raspberry Pi Pico C/C++ SDK
]

4.1.5.3.22. hw_divider_wait_ready
static void hw_divider_wait_ready (void) [inline], [static]
Wait for a divide to complete.

Wait for a divide to complete

4.1.5.3.23. to_quotient_s32
static int32_t to_quotient_s32 (divmod_result_t r) [inline], [static]
Efficient extraction of signed quotient from 32p32 fixed point.
Parameters

r A pair of 32-bit quotient/remainder values.
Returns

Unsigned quotient

4.1.5.3.24. to_quotient_u32
static uint32_t to_quotient_u32 (divmod_result_t r) [inline], [static]
Efficient extraction of unsigned quotient from 32p32 fixed point.
Parameters

r A pair of 32-bit quotient/remainder values.
Returns

Unsigned quotient

4.1.5.3.25. to_remainder_s32
static int32_t to_remainder_s32 (divmod_result_t r) [inline], [static]
Efficient extraction of signed remainder from 32p32 fixed point.
Parameters

r A pair of 32-bit quotient/remainder values.
Returns

Signed remainder

© NOTE

On arm this is just a 32 bit register move or a nop

4.1.5.3.26. to_remainder_u32
static uint32_t to_remainder_u32 (divmod_result_t r) [inline], [static]
Efficient extraction of unsigned remainder from 32p32 fixed point.
Parameters

r A pair of 32-bit quotient/remainder values.

Returns

]
4.1. Hardware APIs 96

Raspberry Pi Pico C/C++ SDK

Unsigned remainder

O NOTE

On Arm this is just a 32 bit register move or a nop

4.1.6. hardware_dma

DMA Controller API.

4.1.6.1. Detailed Description

The RP2040 Direct Memory Access (DMA) master performs bulk data transfers on a processor’s behalf. This leaves
processors free to attend to other tasks, or enter low-power sleep states. The data throughput of the DMA is also
significantly higher than one of RP2040’s processors.

The DMA can perform one read access and one write access, up to 32 bits in size, every clock cycle. There are 12
independent channels, which each supervise a sequence of bus transfers, usually in one of the following scenarios:

® Memory to peripheral
® Peripheral to memory

® Memory to memory

4.1.6.2. Modules

channel_config

DMA channel configuration.

4.1.6.3. Enumerations

enum dma_channel_transfer_size { DMA_SIZE_8 = @, DMA_SIZE_16 = 1, DMA_SIZE 32 = 2 }

Enumeration of available DMA channel transfer sizes.

4.1.6.4. Functions

void dma_channel_claim (uint channel)

Mark a dma channel as used.

void dma_claim_mask (uint32_t channel_mask)

Mark multiple dma channels as used.

void dma_channel_unclaim (uint channel)

Mark a dma channel as no longer used.

void dma_unclaim_mask (uint32_t channel_mask)

Mark multiple dma channels as no longer used.

int dma_claim_unused_channel (bool required)

Claim a free dma channel.

bool dma_channel_is_claimed (uint channel)

Determine if a dma channel is claimed.

]
4.1. Hardware APIs 97

Raspberry Pi Pico C/C++ SDK
]

static void dma_channel_set_config (uint channel, const dma_channel_config *config, bool trigger)

Set a channel configuration.
static void dma_channel_set_read_addr (uint channel, const volatile void *read_addr, bool trigger)

Set the DMA initial read address.

static void dma_channel_set_write_addr (uint channel, volatile void *write_addr, bool trigger)

Set the DMA initial write address.

static void dma_channel_set_trans_count (uint channel, uint32_t trans_count, bool trigger)

Set the number of bus transfers the channel will do.
static void dma_channel_configure (uint channel, const dma_channel_config *config, volatile void *write_addr, const
volatile void *read_addr, uint transfer_count, bool trigger)

Configure all DMA parameters and optionally start transfer.

static void dma_channel_transfer_from_buffer_now (uint channel, const volatile void *read_addr, uint32_t transfer_count)

Start a DMA transfer from a buffer immediately.

static void dma_channel_transfer_to_buffer_now (uint channel, volatile void *write_addr, uint32_t transfer_count)
Start a DMA transfer to a buffer immediately.

static void dma_start_channel_mask (uint32_t chan_mask)
Start one or more channels simultaneously.

static void dma_channel_start (uint channel)

Start a single DMA channel.

static void dma_channel_abort (uint channel)

Stop a DMA transfer.

static void dma_channel_set_irq@_enabled (uint channel, bool enabled)

Enable single DMA channel’s interrupt via DMA_IRQ_0.

static void dma_set_irq@_channel_mask_enabled (uint32_t channel_mask, bool enabled)

Enable multiple DMA channels' interrupts via DMA_IRQ_O0.

static void dma_channel_set_irql1_enabled (uint channel, bool enabled)
Enable single DMA channel’s interrupt via DMA_IRQ_1.

static void dma_set_irq1_channel_mask_enabled (uint32_t channel_mask, bool enabled)
Enable multiple DMA channels' interrupts via DMA_IRQ_T.

static void dma_irqn_set_channel_enabled (uint irq_index, uint channel, bool enabled)

Enable single DMA channel interrupt on either DMA_IRQ_0 or DMA_IRQ_1.

static void dma_irqn_set_channel_mask_enabled (uint irq_index, uint32_t channel_mask, bool enabled)
Enable multiple DMA channels' interrupt via either DMA_IRQ_0 or DMA_IRQ_1.

static bool dma_channel_get_irq@_status (uint channel)
Determine if a particular channel is a cause of DMA_IRQ_O.

static bool dma_channel_get_irql1_status (uint channel)

Determine if a particular channel is a cause of DMA_IRQ_1.

static bool dma_irqn_get_channel_status (uint irq_index, uint channel)

Determine if a particular channel is a cause of DMA_IRQ_N.

static void dma_channel_acknowledge_irq@ (uint channel)

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_O0.

]
4.1. Hardware APIs 98

Raspberry Pi Pico C/C++ SDK
]

static void dma_channel_acknowledge_irq1l (uint channel)

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_1.

static void dma_irqn_acknowledge_channel (uint irq_index, uint channel)

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_N.

static bool dma_channel_is_busy (uint channel)

Check if DMA channel is busy.

static void dma_channel_wait_for_finish_blocking (uint channel)

Wait for a DMA channel transfer to complete.

static void dma_sniffer_enable (uint channel, uint mode, bool force_channel_enable)

Enable the DMA sniffing targeting the specified channel.

static void dma_sniffer_set_byte_swap_enabled (bool swap)

Enable the Sniffer byte swap function.

static void dma_sniffer_set_output_invert_enabled (bool invert)

Enable the Sniffer output invert function.

static void dma_sniffer_set_output_reverse_enabled (bool reverse)

Enable the Sniffer output bit reversal function.

static void dma_sniffer_disable (void)

Disable the DMA sniffer.

static void dma_sniffer_set_data_accumulator (uint32_t seed_value)

Set the sniffer's data accumulator with initial value.

static uint32_t dma_sniffer_get_data_accumulator (void)

Get the sniffer's data accumulator value.

void dma_timer_claim (uint timer)

Mark a dma timer as used.

void dma_timer_unclaim (uint timer)

Mark a dma timer as no longer used.

int dma_claim_unused_timer (bool required)

Claim a free dma timer.

bool dma_timer_is_claimed (uint timer)

Determine if a dma timer is claimed.

static void dma_timer_set_fraction (uint timer, uint16_t numerator, uint16_t denominator)

Set the divider for the given DMA timer.

static vint dma_get_timer_dreq (uint timer_num)

Return the DREQ number for a given DMA timer.

void dma_channel_cleanup (uint channel)

Performs DMA channel cleanup after use.

4.1.6.5. Enumeration Type Documentation

]
4.1. Hardware APIs 99

Raspberry Pi Pico C/C++ SDK

4.1.6.5.1. dma_channel_transfer_size
enum dma_channel_transfer_size
Enumeration of available DMA channel transfer sizes.

Names indicate the number of bits.

Table 10. Enumerator

DMA_SIZE_8 Byte transfer (8 bits)
DMA_SIZE_16 Half word transfer (16 bits)
DMA_SIZE_32 Word transfer (32 bits)

4.1.6.6. Function Documentation

4.1.6.6.1. dma_channel_abort

static void dma_channel_abort (uint channel) [inline], [static]
Stop a DMA transfer.
Function will only return once the DMA has stopped.

Note that due to errata RP2040-E13, aborting a channel which has transfers in-flight (i.e. an individual read has taken
place but the corresponding write has not), the ABORT status bit will clear prematurely, and subsequently the in-flight
transfers will trigger a completion interrupt once they complete.

The effect of this is that you may see a spurious completion interrupt on the channel as a result of calling this method.

The calling code should be sure to ignore a completion IRQ as a result of this method. This may not require any
additional work, as aborting a channel which may be about to complete, when you have a completion IRQ handler
registered, is inherently race-prone, and so code is likely needed to disambiguate the two occurrences.

If that is not the case, but you do have a channel completion IRQ handler registered, you can simply disable/re-enable
the IRQ around the call to this method as shown by this code fragment (using DMA IRQO).

// disable the channel on IRQ@
dma_channel_set_irqg@_enabled(channel, false);
// abort the channel
dma_channel_abort(channel);

// clear the spurious IRQ (if there was one)
dma_channel_acknowledge_irqg@(channel);

// re-enable the channel on IRQO
dma_channel_set_irqg@_enabled(channel, true);

o N o g~ WN =

Parameters
channel DMA channel
4.1.6.6.2. dma_channel_acknowledge_irq0

static void dma_channel_acknowledge_irq@ (uint channel) [inline], [static]
Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_O.
Parameters

channel DMA channel

4.1. Hardware APIs 100

Raspberry Pi Pico C/C++ SDK
]

4.1.6.6.3. dma_channel_acknowledge_irq1

static void dma_channel_acknowledge_irq1 (uint channel) [inline], [static]

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_1.

Parameters
channel DMA channel
4.1.6.6.4. dma_channel_claim

void dma_channel_claim (uint channel)
Mark a dma channel as used.

Method for cooperative claiming of hardware. Will cause a panic if the channel is already claimed. Use of this method
by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters
channel the dma channel
4.1.6.6.5. dma_channel_cleanup

void dma_channel_cleanup (uint channel)
Performs DMA channel cleanup after use.

This can be used to cleanup dma channels when they're no longer needed, such that they are in a clean state for reuse.
IRQ’s for the channel are disabled, any in flight-transfer is aborted and any outstanding interrupts are cleared. The
channel is then clear to be reused for other purposes.

1 if (dma_channel >= 0) {

2 dma_channel_cleanup(dma_channel);
3 dma_channel_unclaim(dma_channel) ;
4 dma_channel = -1;
5

Parameters

channel DMA channel

4.1.6.6.6. dma_channel_configure

static void dma_channel_configure (uint channel, const dma_channel_config * config, volatile void * write_addr, const

volatile void * read_addr, uint transfer_count, bool trigger) [inline], [static]

Configure all DMA parameters and optionally start transfer.

Parameters
channel DMA channel
config Pointer to DMA config structure
write_addr Initial write address
read_addr Initial read address
transfer_count Number of transfers to perform

]
4.1. Hardware APIs 101

Raspberry Pi Pico C/C++ SDK
]

trigger True to start the transfer immediately

4.1.6.6.7. dma_channel_get_irq0_status
static bool dma_channel_get_irq@_status (uint channel) [inline], [static]
Determine if a particular channel is a cause of DMA_IRQ_0.
Parameters
channel DMA channel
Returns

true if the channel is a cause of DMA_IRQ_O, false otherwise

4.1.6.6.8. dma_channel_get_irq1_status
static bool dma_channel_get_irql_status (uint channel) [inline], [static]
Determine if a particular channel is a cause of DMA_IRQ_1.
Parameters
channel DMA channel
Returns

true if the channel is a cause of DMA_IRQ_1, false otherwise

4.1.6.6.9. dma_channel_is_busy
static bool dma_channel_is_busy (uint channel) [inline], [static]
Check if DMA channel is busy.
Parameters
channel DMA channel
Returns

true if the channel is currently busy

4.1.6.6.10. dma_channel_is_claimed
bool dma_channel_is_claimed (uint channel)
Determine if a dma channel is claimed.
Parameters

channel the dma channel
Returns
true if the channel is claimed, false otherwise
See also
dma_channel_claim

dma_channel_claim_mask

]
4.1. Hardware APIs 102

Raspberry Pi Pico C/C++ SDK

4.1.6.6.11. dma_channel_set_config

static void dma_channel_set_config (uint channel, const dma_channel_config * config, bool trigger) [inline], [static]

Set a channel configuration.

Parameters
channel DMA channel
config Pointer to a config structure with required configuration
trigger True to trigger the transfer immediately

4.1.6.6.12. dma_channel_set_irq0_enabled

static void dma_channel_set_irq@_enabled (uint channel, bool enabled) [inline], [static]

Enable single DMA channel’s interrupt via DMA_IRQ_0.

Parameters
channel DMA channel
enabled true to enable interrupt 0 on specified channel, false to disable.

4.1.6.6.13. dma_channel_set_irq1_enabled
static void dma_channel_set_irql1_enabled (uint channel, bool enabled) [inline], [static]
Enable single DMA channel’s interrupt via DMA_IRQ_1.
Parameters
channel DMA channel

enabled true to enable interrupt 1 on specified channel, false to disable.

4.1.6.6.14. dma_channel_set_read_addr

static void dma_channel_set_read_addr (uint channel, const volatile void * read_addr, bool trigger) [inline], [static]

Set the DMA initial read address.

Parameters
channel DMA channel
read_addr Initial read address of transfer.
trigger True to start the transfer immediately

4.1.6.6.15. dma_channel_set_trans_count

static void dma_channel_set_trans_count (uint channel, uint32_t trans_count, bool trigger) [inline], [static]

Set the number of bus transfers the channel will do.

Parameters
channel DMA channel
trans_count The number of transfers (not NOT bytes, see channel_config_set_transfer_data_size)
trigger True to start the transfer immediately

4.1. Hardware APIs 103

Raspberry Pi Pico C/C++ SDK

4.1.6.6.16. dma_channel_set_write_addr

static void dma_channel_set_write_addr (uint channel, volatile void * write_addr, bool trigger) [inline], [static]

Set the DMA initial write address.

Parameters
channel DMA channel
write_addr Initial write address of transfer.
trigger True to start the transfer immediately

4.1.6.6.17. dma_channel_start

static void dma_channel_start (uint channel) [inline], [static]
Start a single DMA channel.

Parameters

channel DMA channel

4.1.6.6.18. dma_channel_transfer_from_buffer_now

static void dma_channel_transfer_from_buffer_now (uint channel, const volatile void * read_addr, uint32_t transfer_count)
[inline], [static]

Start a DMA transfer from a buffer immediately.

Parameters
channel DMA channel
read_addr Sets the initial read address
transfer_count Number of transfers to make. Not bytes, but the number of transfers of

channel_config_set_transfer_data_size() to be sent.

4.1.6.6.19. dma_channel_transfer_to_buffer_now

static void dma_channel_transfer_to_buffer_now (uint channel, volatile void * write_addr, uint32_t transfer_count)
[inline], [static]

Start a DMA transfer to a buffer immediately.

Parameters
channel DMA channel
write_addr Sets the initial write address
transfer_count Number of transfers to make. Not bytes, but the number of transfers of

channel_config_set_transfer_data_size() to be sent.

4.1.6.6.20. dma_channel_unclaim
void dma_channel_unclaim (uint channel)
Mark a dma channel as no longer used.

Parameters

4.1. Hardware APIs 104

Raspberry Pi Pico C/C++ SDK
]

channel the dma channel to release

4.1.6.6.21. dma_channel_wait_for_finish_blocking

static void dma_channel_wait_for_finish_blocking (uint channel) [inline], [static]
Wait for a DMA channel transfer to complete.

Parameters

channel DMA channel

4.1.6.6.22. dma_claim_mask
void dma_claim_mask (uint32_t channel_mask)
Mark multiple dma channels as used.

Method for cooperative claiming of hardware. Will cause a panic if any of the channels are already claimed. Use of this
method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

channel_mask Bitfield of all required channels to claim (bit 0 == channel 0, bit 1 == channel 1 etc)

4.1.6.6.23. dma_claim_unused_channel
int dma_claim_unused_channel (bool required)
Claim a free dma channel.
Parameters
required if true the function will panic if none are available
Returns

the dma channel number or -1 if required was false, and none were free

4.1.6.6.24. dma_claim_unused_timer
int dma_claim_unused_timer (bool required)
Claim a free dma timer.
Parameters
required if true the function will panic if none are available
Returns

the dma timer number or -1 if required was false, and none were free

4.1.6.6.25. dma_get_timer_dreq

static uint dma_get_timer_dreq (uint timer_num) [inline], [static]
Return the DREQ number for a given DMA timer.

Parameters

timer_num DMA timer number 0-3

]
4.1. Hardware APIs 105

Raspberry Pi Pico C/C++ SDK

4.1.6.6.26. dma_irqn_acknowledge_channel
static void dma_irqn_acknowledge_channel (uint irq_index, uint channel) [inline], [static]
Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_N.
Parameters
irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1

channel DMA channel

4.1.6.6.27. dma_irqn_get_channel_status
static bool dma_irqn_get_channel_status (uint irq_index, uint channel) [inline], [static]
Determine if a particular channel is a cause of DMA_IRQ_N.
Parameters
irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1
channel DMA channel
Returns

true if the channel is a cause of the DMA_IRQ_N, false otherwise

4.1.6.6.28. dma_irqn_set_channel_enabled
static void dma_irqn_set_channel_enabled (uint irq_index, uint channel, bool enabled) [inline], [static]
Enable single DMA channel interrupt on either DMA_IRQ_0 or DMA_IRQ_1.
Parameters
irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1
channel DMA channel

enabled true to enable interrupt via irg_index for specified channel, false to disable.

4.1.6.6.29. dma_irqn_set_channel_mask_enabled

static void dma_irqn_set_channel_mask_enabled (uint irq_index, uint32_t channel_mask, bool enabled) [inline], [static]

Enable multiple DMA channels' interrupt via either DMA_IRQ_O or DMA_IRQ_1.

Parameters
irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1
channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified

in the mask.

4.1.6.6.30. dma_set_irq0_channel_mask_enabled

static void dma_set_irq@_channel_mask_enabled (uint32_t channel_mask, bool enabled) [inline], [static]
Enable multiple DMA channels' interrupts via DMA_IRQ_0.

Parameters

4.1. Hardware APIs 106

Raspberry Pi Pico C/C++ SDK
]

channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified
in the mask.

4.1.6.6.31. dma_set_irq1_channel_mask_enabled

static void dma_set_irql_channel_mask_enabled (uint32_t channel_mask, bool enabled) [inline], [static]

Enable multiple DMA channels' interrupts via DMA_IRQ_1.

Parameters
channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified

in the mask.

4.1.6.6.32. dma_sniffer_disable

static void dma_sniffer_disable (void) [inline], [static]

Disable the DMA sniffer.

4.1.6.6.33. dma_sniffer_enable

static void dma_sniffer_enable (uint channel, uint mode, bool force_channel_enable) [inline], [static]

Enable the DMA sniffing targeting the specified channel.

The mode can be one of the following:

Mode Function
0x0 Calculate a CRC-32 (IEEE802.3 polynomial)
0x1 Calculate a CRC-32 (IEEE802.3 polynomial) with bit

reversed data

0x2 Calculate a CRC-16-CCITT

0x3 Calculate a CRC-16-CCITT with bit reversed data

Oxe XOR reduction over all data. == 1 if the total 1 population
count is odd.

Oxf Calculate a simple 32-bit checksum (addition with a 32 bit

accumulator)

Parameters
channel DMA channel
mode See description
force_channel_enable Set true to also turn on sniffing in the channel configuration (this is usually what you

want, but sometimes you might have a chain DMA with only certain segments of the
chain sniffed, in which case you might pass false).

]
4.1. Hardware APIs 107

Raspberry Pi Pico C/C++ SDK
]

4.1.6.6.34. dma_sniffer_get_data_accumulator
static uint32_t dma_sniffer_get_data_accumulator (void) [inline], [static]
Get the sniffer's data accumulator value.

Read value calculated by the hardware from sniffing the DMA stream

4.1.6.6.35. dma_sniffer_set_byte_swap_enabled

static void dma_sniffer_set_byte_swap_enabled (bool swap) [inline], [static]
Enable the Sniffer byte swap function.

Locally perform a byte reverse on the sniffed data, before feeding into checksum.

Note that the sniff hardware is downstream of the DMA channel byteswap performed in the read master: if
channel_config_set_bswap() and dma_sniffer_set_byte_swap_enabled() are both enabled, their effects cancel from the
sniffer’s point of view.

Parameters

swap Set true to enable byte swapping

4.1.6.6.36. dma_sniffer_set_data_accumulator
static void dma_sniffer_set_data_accumulator (uint32_t seed_value) [inline], [static]
Set the sniffer's data accumulator with initial value.

Generally, CRC algorithms are used with the data accumulator initially seeded with OxFFFF or OXFFFFFFFF (for crc16
and crc32 algorithms)

Parameters

seed_value value to set data accumulator

4.1.6.6.37. dma_sniffer_set_output_invert_enabled

static void dma_sniffer_set_output_invert_enabled (bool invert) [inline], [static]

Enable the Sniffer output invert function.

If enabled, the sniff data result appears bit-inverted when read. This does not affect the way the checksum is calculated.
Parameters

invert Set true to enable output bit inversion

4.1.6.6.38. dma_sniffer_set_output_reverse_enabled
static void dma_sniffer_set_output_reverse_enabled (bool reverse) [inline], [static]
Enable the Sniffer output bit reversal function.

If enabled, the sniff data result appears bit-reversed when read. This does not affect the way the checksum is
calculated.

Parameters

reverse Set true to enable output bit reversal

]
4.1. Hardware APIs 108

Raspberry Pi Pico C/C++ SDK

4.1.6.6.39. dma_start_channel_mask

static void dma_start_channel_mask (uint32_t chan_mask) [inline], [static]
Start one or more channels simultaneously.

Parameters

chan_mask Bitmask of all the channels requiring starting. Channel 0 = bit 0, channel 1 = bit 1 etc.

4.1.6.6.40. dma_timer_claim
void dma_timer_claim (uint timer)
Mark a dma timer as used.

Method for cooperative claiming of hardware. Will cause a panic if the timer is already claimed. Use of this method by
libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

timer the dma timer

4.1.6.6.41. dma_timer_is_claimed
bool dma_timer_is_claimed (uint timer)
Determine if a dma timer is claimed.
Parameters

timer the dma timer
Returns
true if the timer is claimed, false otherwise
See also

dma_timer_claim

4.1.6.6.42. dma_timer_set_fraction
static void dma_timer_set_fraction (uint timer, uint16_t numerator, uint16_t denominator) [inline], [static]
Set the divider for the given DMA timer.

The timer will run at the system_clock_freq * numerator / denominator, so this is the speed that data elements will be
transferred at via a DMA channel using this timer as a DREQ

Parameters
timer the dma timer
numerator the fraction’s numerator
denominator the fraction’s denominator

4.1.6.6.43. dma_timer_unclaim
void dma_timer_unclaim (uint timer)
Mark a dma timer as no longer used.

Method for cooperative claiming of hardware.

4.1. Hardware APIs 109

Raspberry Pi Pico C/C++ SDK
]

Parameters

timer the dma timer to release

4.1.6.6.44. dma_unclaim_mask

void dma_unclaim_mask (uint32_t channel_mask)
Mark multiple dma channels as no longer used.
Parameters

channel_mask Bitfield of all channels to unclaim (bit 0 == channel 0, bit 1 == channel 1 etc)

4.1.6.7. channel_config

DMA channel configuration.

4.1.6.7.1. Detailed Description

A DMA channel needs to be configured, these functions provide handy helpers to set up configuration structures. See
dma_channel_config

4.1.6.7.2. Functions
static void channel_config_set_read_increment (dma_channel_config *c, bool incr)
Set DMA channel read increment in a channel configuration object.

static void channel_config_set_write_increment (dma_channel_config *c, bool incr)
Set DMA channel write increment in a channel configuration object.
static void channel_config_set_dreq (dma_channel_config *c, uint dreq)

Select a transfer request signal in a channel configuration object.

static void channel_config_set_chain_to (dma_channel_config *c, uint chain_to)

Set DMA channel chain_to channel in a channel configuration object.

static void channel_config_set_transfer_data_size (dma_channel_config *c, enum dma_channel_transfer_size size)
Set the size of each DMA bus transfer in a channel configuration object.

static void channel_config_set_ring (dma_channel_config *c, bool write, uint size_bits)
Set address wrapping parameters in a channel configuration object.

static void channel_config_set_bswap (dma_channel_config *c, bool bswap)

Set DMA byte swapping config in a channel configuration object.

static void channel_config_set_irq_quiet (dma_channel_config *c, bool irq_quiet)

Set IRQ quiet mode in a channel configuration object.

static void channel_config_set_high_priority (dma_channel_config *c, bool high_priority)
Set the channel priority in a channel configuration object.
static void channel_config_set_enable (dma_channel_config *c, bool enable)

Enable/Disable the DMA channel in a channel configuration object.

static void channel_config_set_sniff_enable (dma_channel_config *c, bool sniff_enable)

Enable access to channel by sniff hardware in a channel configuration object.

]
4.1. Hardware APIs 110

Raspberry Pi Pico C/C++ SDK
]

static dma_channel_config dma_channel_get_default_config (uint channel)

Get the default channel configuration for a given channel.

static dma_channel_config dma_get_channel_config (uint channel)

Get the current configuration for the specified channel.

static uint32_t channel_config_get_ctrl_value (const dma_channel_config *config)

Get the raw configuration register from a channel configuration.

4.1.6.7.3. Function Documentation

channel_config_get_ctrl_value
static uint32_t channel_config_get_ctrl_value (const dma_channel_config * config) [inline], [static]
Get the raw configuration register from a channel configuration.
Parameters
config Pointer to a config structure.
Returns
Register content
channel_config_set_bswap
static void channel_config_set_bswap (dma_channel_config * c, bool bswap) [inline], [static]
Set DMA byte swapping config in a channel configuration object.

No effect for byte data, for halfword data, the two bytes of each halfword are swapped. For word data, the four bytes of
each word are swapped to reverse their order.

Parameters
c Pointer to channel configuration object
bswap True to enable byte swapping

channel_config_set_chain_to
static void channel_config_set_chain_to (dma_channel_config * ¢, uint chain_to) [inline], [static]
Set DMA channel chain_to channel in a channel configuration object.

When this channel completes, it will trigger the channel indicated by chain_to. Disable by setting chain_to to itself (the
same channel)

Parameters
c Pointer to channel configuration object
chain_to Channel to trigger when this channel completes.

channel_config_set_dreq
static void channel_config_set_dreq (dma_channel_config * ¢, uint dreq) [inline], [static]
Select a transfer request signal in a channel configuration object.

The channel uses the transfer request signal to pace its data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the system). 0x0 to 0x3a -> select DREQ n as TREQ 0x3b -> Select
Timer 0 as TREQ 0x3c -> Select Timer 1 as TREQ 0x3d -> Select Timer 2 as TREQ (Optional) 0x3e -> Select Timer 3 as
TREQ (Optional) 0x3f -> Permanent request, for unpaced transfers.

Parameters
c Pointer to channel configuration data

]
4.1. Hardware APIs 111

Raspberry Pi Pico C/C++ SDK
]

dreq Source (see description)
channel_config_set_enable
static void channel_config_set_enable (dma_channel_config * ¢, bool enable) [inline], [static]
Enable/Disable the DMA channel in a channel configuration object.

When false, the channel will ignore triggers, stop issuing transfers, and pause the current transfer sequence (i.e. BUSY
will remain high if already high)

Parameters
c Pointer to channel configuration object
enable True to enable the DMA channel. When enabled, the channel will respond to triggering events, and start

transferring data.
channel_config_set_high_priority
static void channel_config_set_high_priority (dma_channel_config * ¢, bool high_priority) [inline], [static]
Set the channel priority in a channel configuration object.

When true, gives a channel preferential treatment in issue scheduling: in each scheduling round, all high priority
channels are considered first, and then only a single low priority channel, before returning to the high priority channels.

This only affects the order in which the DMA schedules channels. The DMA’s bus priority is not changed. If the DMA is
not saturated then a low priority channel will see no loss of throughput.

Parameters
c Pointer to channel configuration object
high_priority True to enable high priority
channel_config_set_irq_quiet
static void channel_config_set_irq_quiet (dma_channel_config * c, bool irq_quiet) [inline], [static]
Set IRQ quiet mode in a channel configuration object.

In QUIET mode, the channel does not generate IRQs at the end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a control block chain.

Parameters
c Pointer to channel configuration object
irq_quiet True to enable quiet mode, false to disable.

channel_config_set_read_increment
static void channel_config_set_read_increment (dma_channel_config * ¢, bool incr) [inline], [static]

Set DMA channel read increment in a channel configuration object.

Parameters
c Pointer to channel configuration object
iner True to enable read address increments, if false, each read will be from the same address Usually

disabled for peripheral to memory transfers
channel_config_set_ring
static void channel_config_set_ring (dma_channel_config * ¢, bool write, uint size_bits) [inline], [static]
Set address wrapping parameters in a channel configuration object.

Size of address wrap region. If 0, don’t wrap. For values n > 0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating access to naturally-aligned ring buffers. Ring sizes between 2
and 32768 bytes are possible (size_bits from 1 - 15)

]
4.1. Hardware APIs 112

Raspberry Pi Pico C/C++ SDK
]

0x0 -> No wrapping.

Parameters
c Pointer to channel configuration object
write True to apply to write addresses, false to apply to read addresses
size_bits 0 to disable wrapping. Otherwise the size in bits of the changing part of the address. Effectively

wraps the address on a (1 << size_bits) byte boundary.

channel_config_set_sniff_enable
static void channel_config_set_sniff_enable (dma_channel_config * ¢, bool sniff_enable) [inline], [static]
Enable access to channel by sniff hardware in a channel configuration object.
Sniff HW must be enabled and have this channel selected.
Parameters

c Pointer to channel configuration object

sniff_enable True to enable the Sniff HW access to this DMA channel.
channel_config_set_transfer_data_size

static void channel_config_set_transfer_data_size (dma_channel_config * ¢, enum dma_channel_transfer_size size) [inline],
[static]

Set the size of each DMA bus transfer in a channel configuration object.

Set the size of each bus transfer (byte/halfword/word). The read and write addresses advance by the specific amount
(1/2/4 bytes) with each transfer.

Parameters
c Pointer to channel configuration object
size See enum for possible values.

channel_config_set_write_increment
static void channel_config_set_write_increment (dma_channel_config * c, bool incr) [inline], [static]

Set DMA channel write increment in a channel configuration object.

Parameters
c Pointer to channel configuration object
iner True to enable write address increments, if false, each write will be to the same address Usually disabled

for memory to peripheral transfers
dma_channel_get_default_config
static dma_channel_config dma_channel_get_default_config (uint channel) [inline], [static]

Get the default channel configuration for a given channel.

Setting Default

Read Increment true

Write Increment false

DReq DREQ_FORCE

Chain to self

Data size DMA_SIZE_32

Ring write=false, size=0 (i.e. off)

]
4.1. Hardware APIs 113

Raspberry Pi Pico C/C++ SDK
]

Setting Default
Byte Swap false
Quiet IRQs false
High Priority false
Channel Enable true
Sniff Enable false
Parameters
channel DMA channel

Returns

the default configuration which can then be modified.
dma_get_channel_config
static dma_channel_config dma_get_channel_config (uint channel) [inline], [static]
Get the current configuration for the specified channel.
Parameters
channel DMA channel
Returns

The current configuration as read from the HW register (not cached)

4.1.7. hardware_exception

Methods for setting processor exception handlers.

4.1.7.1. Detailed Description

Exceptions are identified by a exception_number which is a number from -15 to -1; these are the numbers relative to the
index of the first IRQ vector in the vector table. (i.e. vector table index is exception_num plus 16)

There is one set of exception handlers per core, so the exception handlers for each core as set by these methods are
independent.

© NoTE

That all exception APIs affect the executing core only (i.e. the core calling the function).

4.1.7.2. Typedefs

typedef void(* exception_handler_t)(void)

Exception handler function type.

4.1.7.3. Enumerations

enum exception_number { NMI_EXCEPTION = -14, HARDFAULT_EXCEPTION = -13, SVCALL_EXCEPTION = -5, PENDSV_EXCEPTION = -2,
SYSTICK_EXCEPTION = -1 }

]
4.1. Hardware APIs 114

Raspberry Pi Pico C/C++ SDK
]

Exception number definitions.

4.1.7.4. Functions

exception_handler_t exception_set_exclusive_handler (enum exception_number num, exception_handler_t handler)

Set the exception handler for an exception on the executing core.

void exception_restore_handler (enum exception_number num, exception_handler_t original_handler)

Restore the original exception handler for an exception on this core.

exception_handler_t exception_get_vtable_handler (enum exception_number num)

Get the current exception handler for the specified exception from the currently installed vector table of the
execution core.

4.1.7.5. Typedef Documentation

4.1.7.5.1. exception_handler_t
typedef void(* exception_handler_t) (void)
Exception handler function type.

All exception handlers should be of this type, and follow normal ARM EABI register saving conventions

4.1.7.6. Enumeration Type Documentation

4.1.7.6.1. exception_number
enum exception_number
Exception number definitions.

Note for consistency with irq numbers, these numbers are defined to be negative. The VTABLE index is the number here
plus 16.

Name Value Exception
NMI_EXCEPTION -14 Non Maskable Interrupt
HARDFAULT_EXCEPTION -13 HardFault
SVCALL_EXCEPTION -5 SV Call
PENDSV_EXCEPTION -2 Pend SV
SYSTICK_EXCEPTION -1 System Tick

4.1.7.7. Function Documentation

4.1.7.7.1. exception_get_vtable_handler

exception_handler_t exception_get_vtable_handler (enum exception_number num)

Get the current exception handler for the specified exception from the currently installed vector table of the execution
core.

]
4.1. Hardware APIs 115

Raspberry Pi Pico C/C++ SDK
]

Parameters
num Exception number
Returns

the address stored in the VTABLE for the given exception number

4.1.7.7.2. exception_restore_handler
void exception_restore_handler (enum exception_number num, exception_handler_t original_handler)
Restore the original exception handler for an exception on this core.

This method may be used to restore the exception handler for an exception on this core to the state prior to the call to
exception_set_exclusive_handler(), so that exception_set_exclusive_handler() may be called again in the future.

Parameters

num Exception number exception_number

original_handler The original handler returned from exception_set_exclusive_handler
See also

exception_set_exclusive_handler()

4.1.7.7.3. exception_set_exclusive_handler
exception_handler_t exception_set_exclusive_handler (enum exception_number num, exception_handler_t handler)
Set the exception handler for an exception on the executing core.

This method will assert if an exception handler has been set for this exception number on this core via this method,
without an intervening restore via exception_restore_handler.

O NoTE

this method may not be used to override an exception handler that was specified at link time by providing a strong
replacement for the weakly defined stub exception handlers. It will assert in this case too.

Parameters
num Exception number
handler The handler to set
See also

exception_number

4.1.8. hardware_flash

Low level flash programming and erase API.

4.1.8.1. Detailed Description

Note these functions are unsafe if you are using both cores, and the other is executing from flash concurrently with the
operation. In this could be the case, you must perform your own synchronisation to make sure that no XIP accesses
take place during flash programming. One option is to use the lockout functions.

]
4.1. Hardware APIs 116

Raspberry Pi Pico C/C++ SDK
]

Likewise they are unsafe if you have interrupt handlers or an interrupt vector table in flash, so you must disable
interrupts before calling in this case.

If PICO_NO_FLASH=1 is not defined (i.e. if the program is built to run from flash) then these functions will make a static
copy of the second stage bootloader in SRAM, and use this to reenter execute-in-place mode after programming or
erasing flash, so that they can safely be called from flash-resident code.

Example
1 #include <stdio.h>
2 #include <stdlib.h>
8
4 #include "pico/stdlib.h"
5 #include "hardware/flash.h"
6
7 // We're going to erase and reprogram a region 256k from the start of flash.
8 // Once done, we can access this at XIP_BASE + 256k.
9 #define FLASH_TARGET_OFFSET (256 * 1024)
10
11 const uint8_t *flash_target_contents = (const uint8_t *) (XIP_BASE + FLASH_TARGET_OFFSET);
12
13 void print_buf(const uint8_t *buf, size_t len) {
14 for (size_t i = @; i < len; ++i) {
15 printf("%02x", buf[i]);
16 if (i % 16 == 15)
17 printf("\n");
18 else
19 printf(" ");
20 }
21 }
22
23 int main() {
24 stdio_init_all();
25 uint8_t random_data[FLASH_PAGE_SIZE];
26 for (int i = @; i < FLASH_PAGE_SIZE; ++i)
27 random_data[i] = rand() >> 16;
28
29 printf("Generated random data:\n");
30 print_buf(random_data, FLASH_PAGE_SIZE);
31
32 // Note that a whole number of sectors must be erased at a time.
33 printf("\nErasing target region...\n");
34 flash_range_erase(FLASH_TARGET_OFFSET, FLASH_SECTOR_SIZE);
35 printf("Done. Read back target region:\n");
36 print_buf(flash_target_contents, FLASH_PAGE_SIZE);
37
38 printf("\nProgramming target region...\n");
39 flash_range_program(FLASH_TARGET_OFFSET, random_data, FLASH_PAGE_SIZE);
40 printf("Done. Read back target region:\n");
41 print_buf(flash_target_contents, FLASH_PAGE_SIZE);
42
43 bool mismatch = false;
44 for (int i = ©; i < FLASH_PAGE_SIZE; ++i) {
45 if (random_data[i] != flash_target_contents[i])
46 mismatch = true;
47 }
48 if (mismatch)
49 printf("Programming failed!\n");
50 else
51 printf("Programming successful!\n");
52 }

]
4.1. Hardware APIs 117

Raspberry Pi Pico C/C++ SDK
]

4.1.8.2. Functions

void flash_range_erase (uint32_t flash_offs, size_t count)

Erase areas of flash.

void flash_range_program (uint32_t flash_offs, const uint8_t *data, size_t count)
Program flash.

void flash_get_unique_id (uint8_t *id_out)
Get flash unique 64 bit identifier.

void flash_do_cmd (const uint8_t *txbuf, uint8_t *rxbuf, size_t count)

Execute bidirectional flash command.

4.1.8.3. Function Documentation

4.1.8.3.1. flash_do_cmd

void flash_do_cmd (const uint8_t * txbuf, uint8_t * rxbuf, size_t count)
Execute bidirectional flash command.

Low-level function to execute a serial command on a flash device attached to the QSPI interface. Bytes are
simultaneously transmitted and received from txbuf and to rxbuf. Therefore, both buffers must be the same length,
count, which is the length of the overall transaction. This is useful for reading metadata from the flash chip, such as
device ID or SFDP parameters.

The XIP cache is flushed following each command, in case flash state has been modified. Like other hardware_flash
functions, the flash is not accessible for execute-in-place transfers whilst the command is in progress, so entering a
flash-resident interrupt handler or executing flash code on the second core concurrently will be fatal. To avoid these
pitfalls it is recommended that this function only be used to extract flash metadata during startup, before the main
application begins to run: see the implementation of pico_get_unique_id() for an example of this.

Parameters
txbuf Pointer to a byte buffer which will be transmitted to the flash
rxbuf Pointer to a byte buffer where data received from the flash will be written. txbuf and rxbuf may be the

same buffer.

count Length in bytes of txbuf and of rxbuf

4.1.8.3.2. flash_get_unique_id
void flash_get_unique_id (uint8_t * id_out)
Get flash unique 64 bit identifier.

Use a standard 4Bh RUID instruction to retrieve the 64 bit unique identifier from a flash device attached to the QSPI
interface. Since there is a 1:1 association between the MCU and this flash, this also serves as a unique identifier for the
board.

Parameters

id_out Pointer to an 8-byte buffer to which the ID will be written

]
4.1. Hardware APIs 118

Raspberry Pi Pico C/C++ SDK
]

4.1.8.3.3. flash_range_erase
void flash_range_erase (uint32_t flash_offs, size_t count)
Erase areas of flash.
Parameters
flash_offs Offset into flash, in bytes, to start the erase. Must be aligned to a 4096-byte flash sector.

count Number of bytes to be erased. Must be a multiple of 4096 bytes (one sector).

4.1.8.3.4. flash_range_program

void flash_range_program (uint32_t flash_offs, const uint8_t * data, size_t count)

Program flash.

Parameters
flash_offs Flash address of the first byte to be programmed. Must be aligned to a 256-byte flash page.
data Pointer to the data to program into flash

count Number of bytes to program. Must be a multiple of 256 bytes (one page).

4.1.9. hardware_gpio

General Purpose Input/Output (GPIO) API.

4.1.9.1. Detailed Description

RP2040 has 36 multi-functional General Purpose Input / Output (GPIO) pins, divided into two banks. In a typical use
case, the pins in the QSPI bank (QSPI_SS, QSPI_SCLK and QSPI_SDO0 to QSPI_SD3) are used to execute code from an
external flash device, leaving the User bank (GPIO0 to GPI029) for the programmer to use. All GPIOs support digital
input and output, but GP1026 to GPI029 can also be used as inputs to the chip’s Analogue to Digital Converter (ADC).
Each GPIO can be controlled directly by software running on the processors, or by a number of other functional blocks.

The function allocated to each GPIO is selected by calling the gpio_set_function function.

O NoOTE

Not all functions are available on all pins.

Each GPIO can have one function selected at a time. Likewise, each peripheral input (e.g. UARTO RX) should only be
selected on one GPIO at a time. If the same peripheral input is connected to multiple GPIOs, the peripheral sees the
logical OR of these GPIO inputs. Please refer to the datasheet for more information on GPIO function select.

Table 11. Function

GPIO F1 F2 F3 F4 F5 F6 F7 F8 F9
Select Table

0 SPI0 RX UARTO TX | I12C0 SDA |PWMO A |SIO PIO0 PIO1 USB
OVCUR
DET

1 SPIOCSn |UARTORX|12C0SCL |PWMOB |SIO PIOO PIO1 USB VBUS
DET

2 SPI0O SCK | UARTO 12C1 SDA |PWMTA |[SIO PIO0 PIO1 USB VBUS

CTS EN

]
4.1. Hardware APIs 119

Raspberry Pi Pico C/C++ SDK
]

GPIO F1 F2 F3 F4 FS F6 F7 F8 F9
3 SPIOTX | UARTO I2C1SCL [PWM1B |SIO PI00 PIO1 usB
RTS OVCUR
DET
4 SPIORX | UART1 TX |12C0 SDA |PWM2A |SIO PIO0 PI1O1 USB VBUS
DET
5 SPIO CSn | UART1RX|12C0SCL |[PWM2B |SIO P100 PI1O1 USB VBUS
EN
6 SPI0O SCK | UART1 12C1 SDA |PWM3 A |SIO P100 PI1O1 USB
CTS OVCUR
DET
7 SPIOTX | UART1 I2C1SCL |[PWM3B |SIO PI00 PIO1 USB VBUS
RTS DET
8 SPITRX |UART1TX |12CO SDA |PWM4 A |[SIO PI00 PIO1 USB VBUS
EN
9 SPIT CSn | UART1RX|I12CO0SCL |[PWM4B |SIO P100 PI101 USB
OVCUR
DET
10 SPIT SCK | UART1 I12C1 SDA |PWM5A |SIO P100 PI1O1 USB VBUS
CTS DET
11 SPITTX | UART1 I2C1SCL [PWM5B |SIO PI00 PIO1 USB VBUS
RTS EN
12 SPITRX | UARTO TX |12CO SDA |PWM6 A |[SIO PI00 PIO1 usB
OVCUR
DET
13 SPIT CSn | UARTORX|I2C0SCL |[PWM6B |SIO PIO0 PI1O1 USB VBUS
DET
14 SPI1 SCK | UARTO I12C1 SDA |PWM7 A |SIO P100 PI1O1 USB VBUS
CTS EN
15 SPITTX | UARTO 12C1SCL |PWM7B |SIO P100 PI1O1 USB
RTS OVCUR
DET
16 SPIORX | UARTO TX |12CO SDA |PWMOA |[SIO PI00 PIO1 USB VBUS
DET
17 SPI0 CSn | UARTORX |12COSCL |PWMOB |[SIO PI00 PIO1 USB VBUS
EN
18 SPIO SCK | UARTO I12C1 SDA |PWMTA |SIO P100 PI101 USB
CTS OVCUR
DET
19 SPIOTX | UARTO 12C1SCL |[PWM1B |SIO P100 PI1O1 USB VBUS
RTS DET
20 SPIORX | UART1 TX |12CO SDA |PWM2A |[SIO PI00 PIO1 CLOCK USB VBUS
GPINO EN
21 SPI0 CSn | UART1RX |12COSCL |PWM2B |[SIO PI00 PIO1 CLOCK usB
GPOUTO |OVCUR
DET

4.1. Hardware APIs

120

Raspberry Pi Pico C/C++ SDK
]

GPIO F1 F2 F3 F4 F5 F6 F7 F8 F9
22 SPIOSCK |UART1 |12C1SDA |[PWM3A |SIO PIOO PIO1 CLOCK |USBVBUS
CTS GPINT DET
23 SPIOTX |UART1 |I12C1SCL |[PWM3B |SIO PIOO PIO1 CLOCK |USBVBUS
RTS GPOUT1 |EN
24 SPITRX |UART1TX|I12COSDA |[PWM4A |SIO PIOO PIO1 CLOCK |usB
GPOUT2 | OVCUR
DET
25 SPI1CSn |UARTTRX|12COSCL |PWM4B |SIO PIOO PIO1 CLOCK |USBVBUS
GPOUT3 |DET
26 SPI1SCK |UARTT |12C1SDA [PWM5A |SIO PIOO PIO1 USB VBUS
CTS EN
27 SPITTX |UARTT |I12C1SCL [PWM5B |SIO PIOO PIO1 USB
RTS OVCUR
DET
28 SPITRX |UARTOTX |12C0O SDA |PWM6 A |[SIO PIOO PIO1 USB VBUS
DET
29 SPI1CSn |UARTORX |12COSCL |PWM6B |SIO PIOO PIO1 USB VBUS
EN
4.1.9.2. Typedefs

typedef void(* gpio_irq_callback_t)(uint gpio, uint32_t event_mask)

4.1.9.3. Enumerations

enum gpio_function { GPIO_FUNC_XIP = @, GPIO_FUNC_SPI = 1, GPIO_FUNC_UART = 2, GPIO_FUNC_I2C = 3, GPIO_FUNC_PWM = 4,
GPIO_FUNC_SIO = 5, GPIO_FUNC_PIO@ = 6, GPIO_FUNC_PIO1 = 7, GPIO_FUNC_GPCK = 8, GPIO_FUNC_USB = 9, GPIO_FUNC_NULL = Ox1f }

GPI0 function definitions for use with function select.

enum gpio_irq_level { GPIO_IRQ_LEVEL_LOW = OxTu, GPIO_IRQ_LEVEL_HIGH = 0x2u, GPIO_IRQ_EDGE_FALL = Ox4u,
GPIO_IRQ_EDGE_RISE = 0x8u }

GPIO Interrupt level definitions (GPIO events)

enum gpio_slew_rate { GPIO_SLEW_RATE_SLOW = @, GPIO_SLEW_RATE_FAST =1 }

Slew rate limiting levels for GPIO outputs.

enum gpio_drive_strength { GPIO_DRIVE_STRENGTH_2MA = @, GPIO_DRIVE_STRENGTH_4MA = 1, GPIO_DRIVE_STRENGTH_8MA = 2,
GPIO_DRIVE_STRENGTH_T2MA = 3 }

Drive strength levels for GPIO outputs.

4.1.9.4. Functions

void gpio_set_function (uint gpio, enum gpio_function fn)

Select GPIO function.

]
4.1. Hardware APIs 121

Raspberry Pi Pico C/C++ SDK
]

enum gpio_function gpio_get_function (uint gpio)
Determine current GPIO function.
void gpio_set_pulls (uint gpio, bool up, bool down)
Select up and down pulls on specific GPIO.
static void gpio_pull_up (uint gpio)
Set specified GPIO to be pulled up.
static bool gpio_is_pulled_up (uint gpio)
Determine if the specified GPIO is pulled up.
static void gpio_pull_down (uint gpio)
Set specified GPIO to be pulled down.
static bool gpio_is_pulled_down (uint gpio)
Determine if the specified GPIO is pulled down.
static void gpio_disable_pulls (uint gpio)
Disable pulls on specified GPIO.
void gpio_set_irqover (uint gpio, uint value)
Set GPIO IRQ override.
void gpio_set_outover (uint gpio, uint value)
Set GPIO output override.
void gpio_set_inover (uint gpio, uint value)
Select GPIO input override.
void gpio_set_oeover (uint gpio, uint value)
Select GPIO output enable override.
void gpio_set_input_enabled (uint gpio, bool enabled)
Enable GPIO input.
void gpio_set_input_hysteresis_enabled (uint gpio, bool enabled)
Enable/disable GPIO input hysteresis (Schmitt trigger)
bool gpio_is_input_hysteresis_enabled (uint gpio)
Determine whether input hysteresis is enabled on a specified GPIO.
void gpio_set_slew_rate (uint gpio, enum gpio_slew_rate slew)
Set slew rate for a specified GPIO.
enum gpio_slew_rate gpio_get_slew_rate (uint gpio)
Determine current slew rate for a specified GPIO.
void gpio_set_drive_strength (uint gpio, enum gpio_drive_strength drive)
Set drive strength for a specified GPIO.
enum gpio_drive_strength gpio_get_drive_strength (uint gpio)
Determine current slew rate for a specified GPIO.
void gpio_set_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)
Enable or disable specific interrupt events for specified GPIO.
void gpio_set_irq_callback (gpio_irq_callback_t callback)

Set the generic callback used for GPIO IRQ events for the current core.

]
4.1. Hardware APIs 122

Raspberry Pi Pico C/C++ SDK
]

void gpio_set_irq_enabled_with_callback (uint gpio, uint32_t event_mask, bool enabled, gpio_irq_callback_t callback)

Convenience function which performs multiple GPIO IRQ related initializations.
void gpio_set_dormant_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)
Enable dormant wake up interrupt for specified GPIO and events.
static uint32_t gpio_get_irq_event_mask (uint gpio)
Return the current interrupt status (pending events) for the given GPIO.
void gpio_acknowledge_irq (uint gpio, uint32_t event_mask)
Acknowledge a GPIO interrupt for the specified events on the calling core.
void gpio_add_raw_irq_handler_with_order_priority_masked (uint gpio_mask, irq_handler_t handler, uint8_t order_priority)
Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.
static void gpio_add_raw_irq_handler_with_order_priority (uint gpio, irq_handler_t handler, uint8_t order_priority)
Adds a raw GPIO IRQ handler for a specific GPIO on the current core.
void gpio_add_raw_irq_handler_masked (uint gpio_mask, irq_handler_t handler)
Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.
static void gpio_add_raw_irq_handler (uint gpio, irq_handler_t handler)
Adds a raw GPIO IRQ handler for a specific GPIO on the current core.
void gpio_remove_raw_irq_handler_masked (uint gpio_mask, irq_handler_t handler)
Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.
static void gpio_remove_raw_irq_handler (uint gpio, irq_handler_t handler)
Removes a raw GPIO IRQ handler for the specified GPIO on the current core.
void gpio_init (uint gpio)
Initialise a GPIO for (enabled 1/0 and set func to GPIO_FUNC_SIO)
void gpio_deinit (uint gpio)
Resets a GPIO back to the NULL function, i.e. disables it.
void gpio_init_mask (uint gpio_mask)
Initialise multiple GP10s (enabled 1/0 and set func to GPIO_FUNC_SIO)
static bool gpio_get (uint gpio)
Get state of a single specified GPIO.
static uint32_t gpio_get_all (void)
Get raw value of all GPIOs.

static void gpio_set_mask (uint32_t mask)

Drive high every GPIO appearing in mask.

static void gpio_clr_mask (uint32_t mask)
Drive low every GPIO appearing in mask.

static void gpio_xor_mask (uint32_t mask)
Toggle every GPIO appearing in mask.

static void gpio_put_masked (uint32_t mask, uint32_t value)
Drive GPIO high/low depending on parameters.

static void gpio_put_all (uint32_t value)

Drive all pins simultaneously.

]
4.1. Hardware APIs 123

Raspberry Pi Pico C/C++ SDK
]

static void gpio_put (uint gpio, bool value)

Drive a single GPIO high/low.

static bool gpio_get_out_level (uint gpio)

Determine whether a GPIO is currently driven high or low.

static void gpio_set_dir_out_masked (uint32_t mask)

Set a number of GPIOs to output.

static void gpio_set_dir_in_masked (uint32_t mask)

Set a number of GPIOs to input.

static void gpio_set_dir_masked (uint32_t mask, uint32_t value)

Set multiple GPIO directions.

static void gpio_set_dir_all_bits (uint32_t values)

Set direction of all pins simultaneously.

static void gpio_set_dir (uint gpio, bool out)

Set a single GPIO direction.

static bool gpio_is_dir_out (uint gpio)
Check if a specific GPIO direction is OUT.

static vint gpio_get_dir (uint gpio)

Get a specific GPIO direction.

4.1.9.5. Typedef Documentation

4.1.9.5.1. gpio_irq_callback_t

typedef void(* gpio_irq_callback_t) (uint gpio, uint32_t event_mask)

Callback function type for GPIO events

Parameters

gpio Which GPIO caused this interrupt

event_mask Which events caused this interrupt. See gpio_irg_level for details.
See also

gpio_set_irg_enabled_with_callback()

gpio_set_irq_callback()

4.1.9.6. Enumeration Type Documentation

4.1.9.6.1. gpio_function

enum gpio_function

GPIO function definitions for use with function select.
GPIO function selectors

Each GPIO can have one function selected at a time. Likewise, each peripheral input (e.g. UARTO RX) should only be
selected on one GPIO at a time. If the same peripheral input is connected to multiple GPIOs, the peripheral sees the

]
4.1. Hardware APIs 124

Raspberry Pi Pico C/C++ SDK
]

Table 12. Enumerator

Table 13. Enumerator

logical OR of these GPIO inputs.

Please refer to the datasheet for more information on GPIO function selection.

4.1.9.6.2. gpio_irq_level
enum gpio_irq_level
GPIO Interrupt level definitions (GPIO events)
GPIO Interrupt levels
An interrupt can be generated for every GPIO pin in 4 scenarios:
¢ |evel High: the GPIO pin is a logical 1
® | evel Low: the GPIO pin is a logical 0
® Edge High: the GPIO has transitioned from a logical 0 to a logical 1

® Edge Low: the GPIO has transitioned from a logical 1 to a logical 0
The level interrupts are not latched. This means that if the pin is a logical 1 and the level high interrupt is active, it will
become inactive as soon as the pin changes to a logical 0. The edge interrupts are stored in the INTR register and can
be cleared by writing to the INTR register.

4.1.9.6.3. gpio_slew_rate
enum gpio_slew_rate
Slew rate limiting levels for GPIO outputs.

Slew rate limiting increases the minimum rise/fall time when a GPIO output is lightly loaded, which can help to reduce
electromagnetic emissions.

See also

gpio_set_slew_rate

GPIO_SLEW_RATE_SLOW Slew rate limiting enabled.

GPIO_SLEW_RATE_FAST Slew rate limiting disabled.

4.1.9.6.4. gpio_drive_strength
enum gpio_drive_strength

Drive strength levels for GPIO outputs.
Drive strength levels for GPIO outputs.
See also

gpio_set_drive_strength

GPIO_DRIVE_STRENGTH_2MA 2 mA nominal drive strength
GPIO_DRIVE_STRENGTH_4MA 4 mA nominal drive strength
GPIO_DRIVE_STRENGTH_8MA 8 mA nominal drive strength
GPIO_DRIVE_STRENGTH_12MA 12 mA nominal drive strength

]
4.1. Hardware APIs 125

Raspberry Pi Pico C/C++ SDK

4.1.9.7. Function Documentation

4.1.9.7.1. gpio_acknowledge_irq

void gpio_acknowledge_irq (uint gpio, uint32_t event_mask)

Acknowledge a GPIO interrupt for the specified events on the calling core.

O NoTE

This may be called with a mask of any of valid bits specified in gpio_irg_level, however it has no effect on level
sensitive interrupts which remain pending while the GPIO is at the specified level. When handling level sensitive
interrupts, you should generally disable the interrupt (see gpio_set_irq_enabled) and then set it up again later once
the GPIO level has changed (or to catch the opposite level).

Parameters

gpio GPIO number

© NOTE

For callbacks set with gpio_set_irq_enabled_with_callback, or gpio_set_irq_callback, this function is called
automatically.

Parameters
event_mask Bitmask of events to clear. See gpio_irg_level for details.
4.1.9.7.2. gpio_add_raw_irq_handler

static void gpio_add_raw_irq_handler (uint gpio, irq_handler_t handler) [inline], [static]
Adds a raw GPIO IRQ handler for a specific GPIO on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method adds such a callback, and disables the "default" callback for the specified GPIO.

© NoOTE

Multiple raw handlers should not be added for the same GPIO, and this method will assert if you attempt to.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

1 void my_irq_handler(void) {

2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);

4 // handle the IRQ

5 }

6 }

Parameters
gpio the GPIO number that will no longer be passed to the default callback for this core
handler the handler to add to the list of GPIO IRQ handlers for this core

4.1. Hardware APIs 126

Raspberry Pi Pico C/C++ SDK
]

4.1.9.7.3. gpio_add_raw_irq_handler_masked
void gpio_add_raw_irq_handler_masked (uint gpio_mask, irq_handler_t handler)
Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method adds such a callback, and disables the "default" callback for the specified GPIOs.

O NoOTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

1 void my_irqg_handler(void) {
2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
4 // handle the IRQ
5 }
6 if (gpio_get_irq_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);
8 // handle the IRQ
9 }
10 }
Parameters
gpio_mask a bit mask of the GPIO numbers that will no longer be passed to the default callback for this core
handler the handler to add to the list of GPIO IRQ handlers for this core
4.1.9.7.4. gpio_add_raw_irq_handler_with_order_priority

static void gpio_add_raw_irq_handler_with_order_priority (uint gpio, irq_handler_t handler, uint8_t order_priority)
[inline], [static]

Adds a raw GPIO IRQ handler for a specific GPIO on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irg_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default callback. The order relative to the
default callback can be controlled via the order_priority parameter(the default callback has the priority
GPIO_IRQ_CALLBACK_ORDER_PRIORITY which defaults to the lowest priority with the intention of it running last).

This method adds such a callback, and disables the "default" callback for the specified GPIO.

©® NoTE

Multiple raw handlers should not be added for the same GPIO, and this method will assert if you attempt to.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

1 void my_irq_handler(void) {
2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irqg(my_gpio_num, my_gpio_event_mask) ;

]
4.1. Hardware APIs 127

Raspberry Pi Pico C/C++ SDK
]

4 // handle the IRQ
}
6 }
Parameters
gpio the GPIO number that will no longer be passed to the default callback for this core
handler the handler to add to the list of GPIO IRQ handlers for this core
order_priority the priority order to determine the relative position of the handler in the list of GPIO IRQ

handlers for this core.

4.1.9.7.5. gpio_add_raw_irq_handler_with_order_priority_masked
void gpio_add_raw_irq_handler_with_order_priority_masked (uint gpio_mask, irq_handler_t handler, uint8_t order_priority)
Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default callback. The order relative to the
default callback can be controlled via the order_priority parameter (the default callback has the priority
GPIO_IRQ_CALLBACK_ORDER_PRIORITY which defaults to the lowest priority with the intention of it running last).

This method adds such an explicit GPIO IRQ handler, and disables the "default" callback for the specified GPIOs.

© NoTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

1 void my_irq_handler(void) {
2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
4 // handle the IRQ
5 }
6 if (gpio_get_irq_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);
8 // handle the IRQ
9 }
10 }
Parameters
gpio_mask a bit mask of the GPIO numbers that will no longer be passed to the default callback for this
core
handler the handler to add to the list of GPIO IRQ handlers for this core
order_priority the priority order to determine the relative position of the handler in the list of GPIO IRQ
handlers for this core.
4.1.9.7.6. gpio_clr_mask

static void gpio_clr_mask (uint32_t mask) [inline], [static]

Drive low every GPIO appearing in mask.

]
4.1. Hardware APIs 128

Raspberry Pi Pico C/C++ SDK

Parameters

mask Bitmask of GPIO values to clear, as bits 0-29

4.1.9.7.7. gpio_deinit

void gpio_deinit (uint gpio)

Resets a GPIO back to the NULL function, i.e. disables it.
Parameters

gpio GPIO number

4.1.9.7.8. gpio_disable_pulls

static void gpio_disable_pulls (uint gpio) [inline], [static]
Disable pulls on specified GPIO.

Parameters

gpio GPIO number

4.1.9.7.9. gpio_get
static bool gpio_get (uint gpio) [inline], [static]
Get state of a single specified GPIO.
Parameters
gpio GPIO number
Returns

Current state of the GPIO. 0 for low, non-zero for high

4.1.9.7.10. gpio_get_all

static uint32_t gpio_get_all (void) [inline], [static]
Get raw value of all GPIOs.

Returns

Bitmask of raw GPIO values, as bits 0-29

4.1.9.7.11. gpio_get_dir
static uint gpio_get_dir (uint gpio) [inline], [static]
Get a specific GPIO direction.
Parameters
gpio GPIO number
Returns

1 for out, 0 forin

4.1. Hardware APIs 129

Raspberry Pi Pico C/C++ SDK
]

4.1.9.7.12. gpio_get_drive_strength
enum gpio_drive_strength gpio_get_drive_strength (uint gpio)
Determine current slew rate for a specified GPIO.
See also
gpio_set_drive_strength
Parameters
gpio GPIO number
Returns

Current drive strength of that GPIO

4.1.9.7.13. gpio_get_function
enum gpio_function gpio_get_function (uint gpio)
Determine current GPIO function.
Parameters
gpio GPIO number
Returns

Which GPIO function is currently selected from list gpio_function

4.1.9.7.14. gpio_get_irq_event_mask
static uint32_t gpio_get_irq_event_mask (uint gpio) [inline], [static]
Return the current interrupt status (pending events) for the given GPIO.
Parameters
gpio GPIO number
Returns
Bitmask of events that are currently pending for the GPIO. See gpio_irg_level for details.
See also

gpio_acknowledge_irq

4.1.9.7.15. gpio_get_out_level
static bool gpio_get_out_level (uint gpio) [inline], [static]
Determine whether a GPIO is currently driven high or low.

This function returns the high/low output level most recently assigned to a GPIO via gpio_put() or similar. This is the
value that is presented outward to the 10 muxing, not the input level back from the pad (which can be read using
gpio_get()).

To avoid races, this function must not be used for read-modify-write sequences when driving GPIOs - instead functions
like gpio_put() should be used to atomically update GPIOs. This accessor is intended for debug use only.

Parameters

gpio GPIO number

]
4.1. Hardware APIs 130

Raspberry Pi Pico C/C++ SDK
]

Returns

true if the GPIO output level is high, false if low.

4.1.9.7.16. gpio_get_slew_rate
enum gpio_slew_rate gpio_get_slew_rate (uint gpio)
Determine current slew rate for a specified GPIO.
See also
gpio_set_slew_rate
Parameters
gpio GPIO number
Returns

Current slew rate of that GPIO

4.1.9.7.17. gpio_init

void gpio_init (uint gpio)

Initialise a GPIO for (enabled 1/0 and set func to GPIO_FUNC_SIO)
Clear the output enable (i.e. set to input). Clear any output value.
Parameters

gpio GPIO number

4.1.9.7.18. gpio_init_mask

void gpio_init_mask (uint gpio_mask)

Initialise multiple GPIOs (enabled 1/0 and set func to GPIO_FUNC_SIO)
Clear the output enable (i.e. set to input). Clear any output value.
Parameters

gpio_mask Mask with 1 bit per GPIO number to initialize

4.1.9.7.19. gpio_is_dir_out
static bool gpio_is_dir_out (uint gpio) [inline], [static]
Check if a specific GPIO direction is OUT.
Parameters
gpio GPIO number
Returns

true if the direction for the pin is OUT

]
4.1. Hardware APIs 131

Raspberry Pi Pico C/C++ SDK
]

4.1.9.7.20. gpio_is_input_hysteresis_enabled

bool gpio_is_input_hysteresis_enabled (uint gpio)

Determine whether input hysteresis is enabled on a specified GPIO.
See also

gpio_set_input_hysteresis_enabled

Parameters

gpio GPIO number

4.1.9.7.21. gpio_is_pulled_down
static bool gpio_is_pulled_down (uint gpio) [inline], [static]
Determine if the specified GPIO is pulled down.
Parameters
gpio GPIO number
Returns

true if the GPIO is pulled down

4.1.9.7.22. gpio_is_pulled_up
static bool gpio_is_pulled_up (uint gpio) [inline], [static]
Determine if the specified GPIO is pulled up.
Parameters
gpio GPIO number
Returns

true if the GPIO is pulled up

4.1.9.7.23. gpio_pull_down

static void gpio_pull_down (uint gpio) [inline], [static]
Set specified GPIO to be pulled down.

Parameters

gpio GPIO number

4.1.9.7.24. gpio_pull_up

static void gpio_pull_up (uint gpio) [inline], [static]
Set specified GPIO to be pulled up.

Parameters

gpio GPIO number

]
4.1. Hardware APIs 132

Raspberry Pi Pico C/C++ SDK
]

4.1.9.7.25. gpio_put

static void gpio_put (uint gpio, bool value) [inline], [static]

Drive a single GPIO high/low.

Parameters
gpio GPIO number
value If false clear the GPIO, otherwise set it.

4.1.9.7.26. gpio_put_all

static void gpio_put_all (uint32_t value) [inline], [static]
Drive all pins simultaneously.

Parameters

value Bitmask of GPIO values to change, as bits 0-29

4.1.9.7.27. gpio_put_masked

static void gpio_put_masked (uint32_t mask, uint32_t value) [inline], [static]

Drive GPIO high/low depending on parameters.

Parameters
mask Bitmask of GPIO values to change, as bits 0-29
value Value to set

For each 1 bit in mask, drive that pin to the value given by corresponding bit in value, leaving other pins unchanged. Since
this uses the TOGL alias, it is concurrency-safe with e.g. an IRQ bashing different pins from the same core.

4.1.9.7.28. gpio_remove_raw_irq_handler
static void gpio_remove_raw_irq_handler (uint gpio, irq_handler_t handler) [inline], [static]
Removes a raw GPIO IRQ handler for the specified GPIO on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irg_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method removes such a callback, and enables the "default" callback for the specified GPIO.

Parameters
gpio the GPIO number that will now be passed to the default callback for this core
handler the handler to remove from the list of GPIO IRQ handlers for this core

4.1.9.7.29. gpio_remove_raw_irq_handler_masked
void gpio_remove_raw_irq_handler_masked (uint gpio_mask, irq_handler_t handler)
Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irg_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method removes such a callback, and enables the "default” callback for the specified GPIOs.

]
4.1. Hardware APIs 133

Raspberry Pi Pico C/C++ SDK
]

Parameters
gpio_mask a bit mask of the GPIO numbers that will now be passed to the default callback for this core
handler the handler to remove from the list of GPIO IRQ handlers for this core

4.1.9.7.30. gpio_set_dir
static void gpio_set_dir (uint gpio, bool out) [inline], [static]
Set a single GPIO direction.
Parameters
gpio GPIO number

out true for out, false forin

4.1.9.7.31. gpio_set_dir_all_bits

static void gpio_set_dir_all_bits (uint32_t values) [inline], [static]
Set direction of all pins simultaneously.

Parameters

values individual settings for each gpio; for GPIO N, bit N is 1 for out, 0 for in

4.1.9.7.32. gpio_set_dir_in_masked

static void gpio_set_dir_in_masked (uint32_t mask) [inline], [static]
Set a number of GPIOs to input.
Parameters

mask Bitmask of GPIO to set to input, as bits 0-29

4.1.9.7.33. gpio_set_dir_masked

static void gpio_set_dir_masked (uint32_t mask, uint32_t value) [inline], [static]

Set multiple GPIO directions.

Parameters
mask Bitmask of GPIO to set to input, as bits 0-29
value Values to set

For each 1 bit in "mask", switch that pin to the direction given by corresponding bit in "value", leaving other pins
unchanged. E.g. gpio_set_dir_masked(0x3, 0x2); -> set pin 0 to input, pin 1 to output, simultaneously.

4.1.9.7.34. gpio_set_dir_out_masked

static void gpio_set_dir_out_masked (uint32_t mask) [inline], [static]
Set a number of GPIOs to output.

Switch all GPIOs in "mask" to output

Parameters

]
4.1. Hardware APIs 134

Raspberry Pi Pico C/C++ SDK
]

mask Bitmask of GPIO to set to output, as bits 0-29

4.1.9.7.35. gpio_set_dormant_irq_enabled

void gpio_set_dormant_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)
Enable dormant wake up interrupt for specified GPIO and events.

This configures IRQs to restart the XOSC or ROSC when they are disabled in dormant mode

Parameters
gpio GPIO number
event_mask Which events will cause an interrupt. See gpio_irg_level for details.
enabled Enable/disable flag

4.1.9.7.36. gpio_set_drive_strength
void gpio_set_drive_strength (uint gpio, enum gpio_drive_strength drive)
Set drive strength for a specified GPIO.
See also
gpio_get_drive_strength
Parameters
gpio GPIO number

drive GPIO output drive strength

4.1.9.7.37. gpio_set_function
void gpio_set_function (uint gpio, enum gpio_function fn)
Select GPIO function.
Parameters
gpio GPIO number

fn Which GPIO function select to use from list gpio_function

4.1.9.7.38. gpio_set_inover

void gpio_set_inover (uint gpio, uint value)

Select GPIO input override.

Parameters
gpio GPIO number
value See gpio_override

4.1.9.7.39. gpio_set_input_enabled

void gpio_set_input_enabled (uint gpio, bool enabled)

Enable GPIO input.

]
4.1. Hardware APIs 135

Raspberry Pi Pico C/C++ SDK
]

Parameters
gpio GPIO number
enabled true to enable input on specified GPIO

4.1.9.7.40. gpio_set_input_hysteresis_enabled
void gpio_set_input_hysteresis_enabled (uint gpio, bool enabled)
Enable/disable GPIO input hysteresis (Schmitt trigger)

Enable or disable the Schmitt trigger hysteresis on a given GPIO. This is enabled on all GPIOs by default. Disabling input
hysteresis can lead to inconsistent readings when the input signal has very long rise or fall times, but slightly reduces
the GPIO’s input delay.

See also

gpio_is_input_hysteresis_enabled

Parameters
gpio GPIO number
enabled true to enable input hysteresis on specified GPIO

4.1.9.7.41. gpio_set_irq_callback
void gpio_set_irq_callback (gpio_irq_callback_t callback)
Set the generic callback used for GPIO IRQ events for the current core.

This function sets the callback used for all GPIO IRQs on the current core that are not explicitly hooked via
gpio_add_raw_irg_handler or other gpio_add_raw_irq_handler_ functions.

This function is called with the GPIO number and event mask for each of the (not explicitly hooked) GPIOs that have
events enabled and that are pending (see gpio_get_irq_event_mask).

O NOTE

The 10 IRQs are independent per-processor. This function affects the processor that calls the function.

Parameters

callback default user function to call on GPIO irg. Note only one of these can be set per processor.

4.1.9.7.42. gpio_set_irq_enabled

void gpio_set_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)
Enable or disable specific interrupt events for specified GPIO.

This function sets which GPIO events cause a GPIO interrupt on the calling core. See gpio_set_irg_callback,
gpio_set_irq_enabled_with_callback and gpio_add_raw_irg_handler to set up a GPIO interrupt handler to handle the
events.

]
4.1. Hardware APIs 136

Raspberry Pi Pico C/C++ SDK

© NOTE

The 10 IRQs are independent per-processor. This configures the interrupt events for the processor that calls the

function.
Parameters
gpio GPIO number
event_mask Which events will cause an interrupt
enabled Enable or disable flag

Events is a bitmask of the following gpio_irg_level values:

bit | constant | interrupt -—| 0 | GPIO_IRQ_LEVEL_LOW | Continuously while level is
low 1 | GPIO_IRQ_LEVEL_HIGH | Continuously while level is high 2 | GPIO_IRQ_EDGE_FALL | On each transition from high
to low 3 | GPIO_IRQ_EDGE_RISE | On each transition from low to high

which are specified in gpio_irq_level

4.1.9.7.43. gpio_set_irq_enabled_with_callback

void gpio_set_irq_enabled_with_callback (uint gpio, uint32_t event_mask, bool enabled, gpio_irq_callback_t callback)
Convenience function which performs multiple GPIO IRQ related initializations.

This method is a slightly eclectic mix of initialization, that:

® Updates whether the specified events for the specified GPIO causes an interrupt on the calling core based on the
enable flag.

® Sets the callback handler for the calling core to callback (or clears the handler if the callback is NULL).

® Enables GPIO IRQs on the current core if enabled is true.
This method is commonly used to perform a one time setup, and following that any additional IRQs/events are enabled
via gpio_set_irq_enabled. All GPIOs/events added in this way on the same core share the same callback; for multiple
independent handlers for different GPIOs you should use gpio_add_raw_irq_handler and related functions.

This method is equivalent to:

1 gpio_set_irq_enabled(gpio, event_mask, enabled);
2 gpio_set_irq_callback(callback);
3 if (enabled) irqg_set_enabled(IO_IRQ_BANKO, true);

© NoTE

The 10 IRQs are independent per-processor. This method affects only the processor that calls the function.

Parameters
gpio GPIO number
event_mask Which events will cause an interrupt. See gpio_irg_level for details.
enabled Enable or disable flag
callback user function to call on GPIO irq. if NULL, the callback is removed

]
4.1. Hardware APIs 137

Raspberry Pi Pico C/C++ SDK

4.1.9.7.44. gpio_set_irqover

void gpio_set_irqover (uint gpio, uint value)
Set GPIO IRQ override.

Optionally invert a GPIO IRQ signal, or drive it high or low

Parameters
gpio GPIO number
value See gpio_override

4.1.9.7.45. gpio_set_mask

static void gpio_set_mask (uint32_t mask) [inline], [static]
Drive high every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to set, as bits 0-29

4.1.9.7.46. gpio_set_oeover

void gpio_set_oeover (uint gpio, uint value)

Select GPIO output enable override.

Parameters
gpio GPIO number
value See gpio_override

4.1.9.7.47. gpio_set_outover

void gpio_set_outover (uint gpio, uint value)

Set GPIO output override.

Parameters
gpio GPIO number
value See gpio_override

4.1.9.7.48. gpio_set_pulls
void gpio_set_pulls (uint gpio, bool up, bool down)
Select up and down pulls on specific GPIO.
Parameters

gpio GPIO number

up If true set a pull up on the GPIO

down If true set a pull down on the GPIO

4.1. Hardware APIs 138

Raspberry Pi Pico C/C++ SDK

© NOTE

On the RP2040, setting both pulls enables a "bus keep" function, i.e. a weak pull to whatever is current high/low state
of GPIO.

4.1.9.7.49. gpio_set_slew_rate
void gpio_set_slew_rate (uint gpio, enum gpio_slew_rate slew)
Set slew rate for a specified GPIO.
See also
gpio_get_slew_rate
Parameters
gpio GPIO number

slew GPIO output slew rate

4.1.9.7.50. gpio_xor_mask

static void gpio_xor_mask (uint32_t mask) [inline], [static]
Toggle every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to toggle, as bits 0-29

4.1.10. hardware_i2c

12C Controller API.

4.1.10.1. Detailed Description

The I12C bus is a two-wire serial interface, consisting of a serial data line SDA and a serial clock SCL. These wires carry
information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can
operate as either a “transmitter” or “receiver”, depending on the function of the device. Devices can also be considered
as masters or slaves when performing data transfers. A master is a device that initiates a data transfer on the bus and
generates the clock signals to permit that transfer. The first byte in the data transfer always contains the 7-bit address
and a read/write bit in the LSB position. This API takes care of toggling the read/write bit. After this, any device
addressed is considered a slave.

This API allows the controller to be set up as a master or a slave using the i2c_set_slave_mode function.

The external pins of each controller are connected to GPIO pins as defined in the GPIO muxing table in the datasheet.
The muxing options give some |0 flexibility, but each controller external pin should be connected to only one GPIO.

Note that the controller does NOT support High speed mode or Ultra-fast speed mode, the fastest operation being fast
mode plus at up to 1000Kb/s.

See the datasheet for more information on the 12C controller and its usage.

Example

1 // Sweep through all 7-bit I2C addresses, to see if any slaves are present on
2 // the I2C bus. Print out a table that looks like this:

]
4.1. Hardware APIs 139

Raspberry Pi Pico C/C++ SDK
]

//

// I2C Bus Scan

// e 1 2 3 4 5 6 7 8 9 A B C D E F

//

//

//
9 //
10 //
1 //
12 //
13 //
14 //
15 // E.g. if slave addresses 0x12 and 6x34 were acknowledged.

16

17 #include <stdio.h>

18 #include "pico/stdlib.h"

19 #include "pico/binary_info.h"

20 #include "hardware/i2c.h"

21

22 // I2C reserves some addresses for special purposes. We exclude these from the scan.

23 // These are any addresses of the form 060 O0xxx or 111 Txxx

24 bool reserved_addr(uint8_t addr) {

0w N O oW

NSO a0 AN ON 2

25 return (addr & 6x78) == 0 || (addr & @x78) == 0x78;
26 }

27

28 int main() {

29 // Enable UART so we can print status output

30 stdio_init_all();

31 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
I'defined(PICO_DEFAULT_I2C_SCL_PIN)
32 #warning i2c/bus_scan example requires a board with I2C pins

33 puts("Default I2C pins were not defined");

34 #else

35 // This example will use I2C0 on the default SDA and SCL pins (GP4, GP5 on a Pico)

36 i2c_init(i2c_default, 100 * 1000);

37 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

38 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

39 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

40 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

41 // Make the I2C pins available to picotool

42 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));

43

44 printf("\nI2C Bus Scan\n");

45 printf(" © 1 2 3 4 5 6 7 8 9 A B C D E F\n");

46

47 for (int addr = @; addr < (1 << 7); ++addr) {

48 if (addr % 16 == 0) {

49 printf("%02x ", addr);

50 }

51

52 // Perform a 1-byte dummy read from the probe address. If a slave

53 // acknowledges this address, the function returns the number of bytes

54 // transferred. If the address byte is ignored, the function returns

55| // -1.

56

57 // Skip over any reserved addresses.

58 int ret;

59 uint8_t rxdata;

60 if (reserved_addr(addr))

61 ret = PICO_ERROR_GENERIC;

62 else

63 ret = i2c_read_blocking(i2c_default, addr, &rxdata, 1, false);

64

]
4.1. Hardware APIs 140

Raspberry Pi Pico C/C++ SDK
]

65 printf(ret <0 2 "." : "@");

66 printf(addr % 16 == 15 2 "\n" : " ");
67 }

68 printf("Done.\n");

69 return 0;

70 #endif

71 }

4.1.10.2. Functions

uint i2c_init (i2c_inst_t *i2c, uint baudrate)
Initialise the 12C HW block.

void i2c_deinit (i2c_inst_t *i2c)
Disable the 12C HW block.

uint i2c_set_baudrate (i2c_inst_t *i2c, uint baudrate)

Set 12C baudrate.

void i2c_set_slave_mode (i2c_inst_t *i2c, bool slave, uint8_t addr)
Set 12C port to slave mode.
static vint i2c_hw_index (i2c_inst_t *i2c)
Convert I12C instance to hardware instance number.
int i2c_write_blocking_until (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, absolute_time_t
until)

Attempt to write specified number of bytes to address, blocking until the specified absolute time is reached.

int i2c_read_blocking_until (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, absolute_time_t until)

Attempt to read specified number of bytes from address, blocking until the specified absolute time is reached.

static int i2c_write_timeout_us (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, uint

timeout_us)

Attempt to write specified number of bytes to address, with timeout.

static int i2c_read_timeout_us (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, uint timeout_us)
Attempt to read specified number of bytes from address, with timeout.

int i2c_write_blocking (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop)
Attempt to write specified number of bytes to address, blocking.

int i2c_read_blocking (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop)
Attempt to read specified number of bytes from address, blocking.

static size_t i2c_get_write_available (i2c_inst_t *i2c)
Determine non-blocking write space available.

static size_t i2c_get_read_available (i2c_inst_t *i2c)
Determine number of bytes received.

static void i2c_write_raw_blocking (i2c_inst_t *i2c, const uint8_t *src, size_t len)

Write direct to TX FIFO.

static void i2c_read_raw_blocking (i2c_inst_t *i2c, uint8_t *dst, size_t len)

Read direct from RX FIFO.

static uint8_t i2c_read_byte_raw (i2c_inst_t *i2c)

Pop a byte from 12C Rx FIFO.

]
4.1. Hardware APIs 141

Raspberry Pi Pico C/C++ SDK
]

static void i2c_write_byte_raw (i2c_inst_t *i2c, uint8_t value)

Push a byte into I2C Tx FIFO.

static uint i2c_get_dreq (i2c_inst_t *i2c, bool is_tx)

Return the DREQ to use for pacing transfers to/from a particular 12C instance.

4.1.10.2.1. i2c0_inst

i2c_inst_t i2c@_inst
The 12C identifiers for use in 12C functions.

e.g. i2c_init(i2c0, 48000)

4.1.10.3. Function Documentation

4.1.10.3.1. i2c_deinit
void i2c_deinit (i2c_inst_t * i2c)
Disable the 12C HW block.
Parameters

i2c Either i2c0 ori2c1

Disable the 12C again if it is no longer used. Must be reinitialised before being used again.

4.1.10.3.2. i2c_get_dreq

static uint i2c_get_dreq (i2c_inst_t * i2c, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular I2C instance.

Parameters
i2c Either i2c0 ori2c1
is_tx true for sending data to the 12C instance, false for receiving data from the 12C instance

4.1.10.3.3. i2c_get_read_available
static size_t i2c_get_read_available (i2c_inst_t * i2c) [inline], [static]
Determine number of bytes received.
Parameters
i2c Either i2c0 ori2c1
Returns

0 if no data available, if return is nonzero at least that many bytes can be read without blocking.

4.1.10.3.4. i2c_get_write_available

static size_t i2c_get_write_available (i2c_inst_t * i2c) [inline], [static]

Determine non-blocking write space available.

]
4.1. Hardware APIs 142

Raspberry Pi Pico C/C++ SDK
]

Parameters
i2c Either i2c0 ori2c1
Returns

0 if no space is available in the 12C to write more data. If return is nonzero, at least that many bytes can be written
without blocking.

4.1.10.3.5. i2c_hw_index
static uint i2c_hw_index (i2c_inst_t * i2c) [inline], [static]
Convert 12C instance to hardware instance number.
Parameters

i2c I12C instance
Returns

Number of 12C, 0 or 1.

4.1.10.3.6. i2c_init
uint i2c_init (i2c_inst_t * i2c¢, uint baudrate)
Initialise the 12C HW block.

Put the 12C hardware into a known state, and enable it. Must be called before other functions. By default, the 12C is
configured to operate as a master.

The 12C bus frequency is set as close as possible to requested, and the actual rate set is returned
Parameters

i2c Either i2c0 or i2c1

baudrate Baudrate in Hz (e.g. 100kHz is 100000)
Returns

Actual set baudrate

4.1.10.3.7. i2c_read_blocking

int i2c_read_blocking (i2c_inst_t * i2c, uint8_t addr, uint8_t * dst, size_t len, bool nostop)

Attempt to read specified number of bytes from address, blocking.

Parameters
i2c Either i2c0 ori2c1
addr 7-bit address of device to read from
dst Pointer to buffer to receive data
len Length of data in bytes to receive
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged or no device present.

]
4.1. Hardware APIs 143

Raspberry Pi Pico C/C++ SDK
]

4.1.10.3.8. i2c_read_blocking_until

int i2c_read_blocking_until (i2c_inst_t * i2c, uint8_t addr, uint8_t * dst, size_t len, bool nostop, absolute_ time_t
until)

Attempt to read specified number of bytes from address, blocking until the specified absolute time is reached.

Parameters
i2c Either i2c0 or i2c1
addr 7-bit address of device to read from
dst Pointer to buffer to receive data
len Length of data in bytes to receive
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
until The absolute time that the block will wait until the entire transaction is complete.
Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.10.3.9. i2c_read_byte_raw
static uint8_t i2c_read_byte_raw (i2c_inst_t * i2c) [inline], [static]
Pop a byte from 12C Rx FIFO.
This function is non-blocking and assumes the Rx FIFO isn’t empty.
Parameters

i2c I2C instance.
Returns

uint8_t Byte value.

4.1.10.3.10. i2c_read_raw_blocking
static void i2c_read_raw_blocking (i2c_inst_t * i2c, uint8_t * dst, size_t len) [inline], [static]
Read direct from RX FIFO.
Parameters
i2c Either i2¢c0 ori2c1
dst Buffer to accept data
len Number of bytes to read

Reads directly from the 12C RX FIFO which is mainly useful for slave-mode operation.

4.1.10.3.11. i2c_read_timeout_us

static int i2c_read_timeout_us (i2c_inst_t * i2c¢, uint8_t addr, uint8_t * dst, size_t len, bool nostop, uint timeout_us)
[inline], [static]

Attempt to read specified number of bytes from address, with timeout.

Parameters

]
4.1. Hardware APIs 144

Raspberry Pi Pico C/C++ SDK
]

i2c Either i2c0 ori2c1

addr 7-bit address of device to read from

dst Pointer to buffer to receive data

len Length of data in bytes to receive

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next

transfer will begin with a Restart rather than a Start.
timeout_us The time that the function will wait for the entire transaction to complete
Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.10.3.12. i2c_set_baudrate
uint i2c_set_baudrate (i2c_inst_t * i2c, uint baudrate)
Set 12C baudrate.

Set 12C bus frequency as close as possible to requested, and return actual rate set. Baudrate may not be as exactly
requested due to clocking limitations.

Parameters

i2c Either i2c0 or i2c1

baudrate Baudrate in Hz (e.g. 100kHz is 100000)
Returns

Actual set baudrate

4.1.10.3.13. i2c_set_slave_mode

void i2c_set_slave_mode (i2c_inst_t * i2c, bool slave, uint8_t addr)

Set 12C port to slave mode.

Parameters
i2c Either i2¢c0 or i2c1
slave true to use slave mode, false to use master mode
addr If slave is true, set the slave address to this value

4.1.10.3.14. i2c_write_blocking

int i2c_write_blocking (i2c_inst_t * i2c, uint8_t addr, const uint8_t * src, size_t len, bool nostop)

Attempt to write specified number of bytes to address, blocking.

Parameters
i2c Either i2c0 or i2c1
addr 7-bit address of device to write to
sre Pointer to data to send
len Length of data in bytes to send

]
4.1. Hardware APIs 145

Raspberry Pi Pico C/C++ SDK
]

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.

Returns

Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present.

4.1.10.3.15. i2c_write_blocking_until

int i2c_write_blocking_until (i2c_inst_t * i2c, uint8_t addr, const uint8_t * src, size_t 1len, bool nostop,
absolute_time_t until)

Attempt to write specified number of bytes to address, blocking until the specified absolute time is reached.

Parameters
i2c Either i2c0 or i2c1
addr 7-bit address of device to write to
sre Pointer to data to send
len Length of data in bytes to send
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
until The absolute time that the block will wait until the entire transaction is complete. Note, an individual
timeout of this value divided by the length of data is applied for each byte transfer, so if the first or
subsequent bytes fails to transfer within that sub timeout, the function will return with an error.
Returns

Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.10.3.16. i2c_write_byte_raw

static void i2c_write_byte_raw (i2c_inst_t * i2c, uint8_t value) [inline], [static]
Push a byte into 12C Tx FIFO.

This function is non-blocking and assumes the Tx FIFO isn't full.

Parameters
i2c 12C instance.
value Byte value.

4.1.10.3.17. i2c_write_raw_blocking
static void i2c_write_raw_blocking (i2c_inst_t * i2c, const uint8_t * src, size_t len) [inline], [static]
Write direct to TX FIFO.
Parameters
i2c Either i2c0 ori2c1
sre Data to send
len Number of bytes to send

Writes directly to the I2C TX FIFO which is mainly useful for slave-mode operation.

]
4.1. Hardware APIs 146

Raspberry Pi Pico C/C++ SDK
]

4.1.10.3.18. i2c_write_timeout_us

static int i2c_write_timeout_us (i2c_inst_t * i2c¢, uint8_t addr, const uint8_t * src, size_t len, bool nostop, uint
timeout_us) [inline], [static]

Attempt to write specified number of bytes to address, with timeout.

Parameters
i2c Either i2c0 or i2c1
addr 7-bit address of device to write to
sre Pointer to data to send
len Length of data in bytes to send
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
timeout_us The time that the function will wait for the entire transaction to complete. Note, an individual
timeout of this value divided by the length of data is applied for each byte transfer, so if the first or
subsequent bytes fails to transfer within that sub timeout, the function will return with an error.
Returns

Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.11. hardware_interp

Hardware Interpolator API.

4.1.11.1. Detailed Description

Each core is equipped with two interpolators (INTERPO and INTERP1) which can be used to accelerate tasks by
combining certain pre-configured simple operations into a single processor cycle. Intended for cases where the pre-
configured operation is repeated a large number of times, this results in code which uses both fewer CPU cycles and
fewer CPU registers in the time critical sections of the code.

The interpolators are used heavily to accelerate audio operations within the SDK, but their flexible configuration make it
possible to optimise many other tasks such as quantization and dithering, table lookup address generation, affine
texture mapping, decompression and linear feedback.

Please refer to the RP2040 datasheet for more information on the HW interpolators and how they work.

4.1.11.2. Modules

interp_config

Interpolator configuration.

4.1.11.3. Functions

void interp_claim_lane (interp_hw_t *interp, uint lane)
Claim the interpolator lane specified.

void interp_claim_lane_mask (interp_hw_t *interp, uint lane_mask)
Claim the interpolator lanes specified in the mask.

]
4.1. Hardware APIs 147

Raspberry Pi Pico C/C++ SDK
]

void interp_unclaim_lane (interp_hw_t *interp, uint lane)

Release a previously claimed interpolator lane.

bool interp_lane_is_claimed (interp_hw_t *interp, uint lane)

Determine if an interpolator lane is claimed.

void interp_unclaim_lane_mask (interp_hw_t *interp, uint lane_mask)

Release previously claimed interpolator lanes.

static void interp_set_force_bits (interp_hw_t *interp, uint lane, uint bits)

Directly set the force bits on a specified lane.

void interp_save (interp_hw_t *interp, interp_hw_save_t *saver)

Save the specified interpolator state.

void interp_restore (interp_hw_t *interp, interp_hw_save_t *saver)

Restore an interpolator state.

static void interp_set_base (interp_hw_t *interp, uint lane, uint32_t val)

Sets the interpolator base register by lane.

static vint32_t interp_get_base (interp_hw_t *interp, uint lane)

Gets the content of interpolator base register by lane.

static void interp_set_base_both (interp_hw_t *interp, uint32_t val)

Sets the interpolator base registers simultaneously.

static void interp_set_accumulator (interp_hw_t *interp, uint lane, uint32_t val)

Sets the interpolator accumulator register by lane.

static uint32_t interp_get_accumulator (interp_hw_t *interp, uint lane)

Gets the content of the interpolator accumulator register by lane.

static uint32_t interp_pop_lane_result (interp_hw_t *interp, uint lane)

Read lane result, and write lane results to both accumulators to update the interpolator.

static uint32_t interp_peek_lane_result (interp_hw_t *interp, uint lane)

Read lane result.

static uint32_t interp_pop_full_result (interp_hw_t *interp)

Read lane result, and write lane results to both accumulators to update the interpolator.

static uint32_t interp_peek_full_result (interp_hw_t *interp)

Read lane result.

static void interp_add_accumulater (interp_hw_t *interp, uint lane, uint32_t val)

Add to accumulator.

static uint32_t interp_get_raw (interp_hw_t *interp, uint lane)

Get raw lane value.

4.1.11.4. Function Documentation

4.1.11.4.1. interp_add_accumulater

static void interp_add_accumulater (interp_hw_t * interp, uint lane, uint32_t val) [inline], [static]

Add to accumulator.

]
4.1. Hardware APIs 148

Raspberry Pi Pico C/C++ SDK
]

Atomically add the specified value to the accumulator on the specified lane

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1
val Value to add

4.1.11.4.2. interp_claim_lane

void interp_claim_lane (interp_hw_t * interp, uint lane)

Claim the interpolator lane specified.

Use this function to claim exclusive access to the specified interpolator lane.

This function will panic if the lane is already claimed.

Parameters
interp Interpolator on which to claim a lane. interp0 or interp1
lane The lane number, 0 or 1.

4.1.11.4.3. interp_claim_lane_mask

void interp_claim_lane_mask (interp_hw_t * interp, uint lane_mask)

Claim the interpolator lanes specified in the mask.

Parameters
interp Interpolator on which to claim lanes. interp0 or interp1
1lane_mask Bit pattern of lanes to claim (only bits 0 and 1 are valid)

4.1.11.4.4. interp_get_accumulator

static uint32_t interp_get_accumulator (interp_hw_t * interp, uint lane) [inline], [static]

Gets the content of the interpolator accumulator register by lane.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1

Returns

The current content of the register

4.1.11.4.5. interp_get_base

static uint32_t interp_get_base (interp_hw_t * interp, uint lane) [inline], [static]

Gets the content of interpolator base register by lane.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1 or 2

]
4.1. Hardware APIs 149

Raspberry Pi Pico C/C++ SDK
]

Returns

The current content of the lane base register

4.1.11.4.6. interp_get_raw
static uint32_t interp_get_raw (interp_hw_t * interp, uint lane) [inline], [static]
Get raw lane value.

Returns the raw shift and mask value from the specified lane, BASEQ is NOT added

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1

Returns

The raw shift/mask value

4.1.11.4.7. interp_lane_is_claimed

bool interp_lane_is_claimed (interp_hw_t * interp, uint lane)

Determine if an interpolator lane is claimed.

Parameters
interp Interpolator whose lane to check
lane The lane number, 0 or 1

Returns

true if claimed, false otherwise
See also
interp_claim_lane

interp_claim_lane_mask

4.1.11.4.8. interp_peek_full_result
static uint32_t interp_peek_full_result (interp_hw_t * interp) [inline], [static]
Read lane result.
Parameters
interp Interpolator instance, interp0 or interp1.
Returns

The content of the FULL register

4.1.11.4.9. interp_peek_lane_result

static uint32_t interp_peek_lane_result (interp_hw_t * interp, uint lane) [inline], [static]
Read lane result.

Parameters

]
4.1. Hardware APIs 150

Raspberry Pi Pico C/C++ SDK
]

interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1
Returns

The content of the lane result register

4.1.11.4.10. interp_pop_full_result
static uint32_t interp_pop_full_result (interp_hw_t * interp) [inline], [static]
Read lane result, and write lane results to both accumulators to update the interpolator.
Parameters
interp Interpolator instance, interp0 or interp1.
Returns

The content of the FULL register

4.1.11.4.11. interp_pop_lane_result

static uint32_t interp_pop_lane_result (interp_hw_t * interp, uint lane) [inline], [static]

Read lane result, and write lane results to both accumulators to update the interpolator.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1

Returns

The content of the lane result register

4.1.11.4.12. interp_restore

void interp_restore (interp_hw_t * interp, interp_hw_save_t * saver)

Restore an interpolator state.

Parameters
interp Interpolator instance, interp0 or interp.
saver Pointer to save structure to reapply to the specified interpolator

4.1.11.4.13. interp_save
void interp_save (interp_hw_t * interp, interp_hw_save_t * saver)
Save the specified interpolator state.

Can be used to save state if you need an interpolator for another purpose, state can then be recovered afterwards and
continue from that point

Parameters
interp Interpolator instance, interp0 or interp1.
saver Pointer to the save structure to fill in

]
4.1. Hardware APIs 151

Raspberry Pi Pico C/C++ SDK

4.1.11.4.14. interp_set_accumulator

static void interp_set_accumulator (interp_hw_t * interp, uint lane, uint32_t val) [inline], [static]

Sets the interpolator accumulator register by lane.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1
val The value to apply to the register

4.1.11.4.15. interp_set_base

static void interp_set_base (interp_hw_t * interp, uint lane, uint32_t val) [inline], [static]

Sets the interpolator base register by lane.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1 or 2
val The value to apply to the register

4.1.11.4.16. interp_set_base_both
static void interp_set_base_both (interp_hw_t * interp, uint32_t val) [inline], [static]
Sets the interpolator base registers simultaneously.

The lower 16 bits go to BASEQ, upper bits to BASE1 simultaneously. Each half is sign-extended to 32 bits if that lane’s
SIGNED flag is set.

Parameters
interp Interpolator instance, interp0 or interp1.
val The value to apply to the register

4.1.11.4.17. interp_set_force_bits
static void interp_set_force_bits (interp_hw_t * interp, uint lane, uint bits) [inline], [static]
Directly set the force bits on a specified lane.

These bits are ORed into bits 29:28 of the lane result presented to the processor on the bus. There is no effect on the
internal 32-bit datapath.

Useful for using a lane to generate sequence of pointers into flash or SRAM, saving a subsequent OR or add operation.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane to set
bits The bits to set (bits 0 and 1, value range 0-3)

4.1. Hardware APIs 152

Raspberry Pi Pico C/C++ SDK
]

4.1.11.4.18. interp_unclaim_lane

void interp_unclaim_lane (interp_hw_t * interp, uint lane)

Release a previously claimed interpolator lane.

Parameters
interp Interpolator on which to release a lane. interp0 or interp1
lane The lane number, 0 or 1

4.1.11.4.19. interp_unclaim_lane_mask

void interp_unclaim_lane_mask (interp_hw_t * interp, uint lane_mask)
Release previously claimed interpolator lanes.

See also

interp_claim_lane_mask

Parameters
interp Interpolator on which to release lanes. interpO or interp1
1lane_mask Bit pattern of lanes to unclaim (only bits 0 and 1 are valid)

4.1.11.5. interp_config

Interpolator configuration.

4.1.11.5.1. Detailed Description

Each interpolator needs to be configured, these functions provide handy helpers to set up configuration structures.

4.1.11.5.2. Functions
static void interp_config_set_shift (interp_config *c, uint shift)
Set the interpolator shift value.

static void interp_config_set_mask (interp_config *c, uint mask_lsb, uint mask_msb)
Set the interpolator mask range.

static void interp_config_set_cross_input (interp_config *c, bool cross_input)
Enable cross input.

static void interp_config_set_cross_result (interp_config *c, bool cross_result)

Enable cross results.

static void interp_config_set_signed (interp_config *c, bool _signed)
Set sign extension.
static void interp_config_set_add_raw (interp_config *c, bool add_raw)

Set raw add option.

static void interp_config_set_blend (interp_config *c, bool blend)

Set blend mode.

]
4.1. Hardware APIs 153

Raspberry Pi Pico C/C++ SDK
]

static void interp_config_set_clamp (interp_config *c, bool clamp)

Set interpolator clamp mode (Interpolator 1 only)

static void interp_config_set_force_bits (interp_config *c, uint bits)

Set interpolator Force bits.

static interp_config interp_default_config (void)

Get a default configuration.

static void interp_set_config (interp_hw_t *interp, uint lane, interp_config *config)

Send configuration to a lane.

4.1.11.5.3. Function Documentation

interp_config_set_add_raw
static void interp_config_set_add_raw (interp_config * ¢, bool add_raw) [inline], [static]
Set raw add option.

When enabled, mask + shift is bypassed for LANEO result. This does not affect the FULL result.

Parameters
c Pointer to interpolation config
add_raw If true, enable raw add option.

interp_config_set_blend
static void interp_config_set_blend (interp_config * c, bool blend) [inline], [static]
Set blend mode.

If enabled, LANE1 result is a linear interpolation between BASEO and BASE1, controlled by the 8 LSBs of lane 1 shift and
mask value (a fractional number between 0 and 255/256ths)

LANEQO result does not have BASEO added (yields only the 8 LSBs of lane 1 shift+mask value)
FULL result does not have lane 1 shift+mask value added (BASE2 + lane 0 shift+mask)

LANET SIGNED flag controls whether the interpolation is signed or unsig

Parameters
c Pointer to interpolation config
blend Set true to enable blend mode.

interp_config_set_clamp

static void interp_config_set_clamp (interp_config * ¢, bool clamp) [inline], [static]
Set interpolator clamp mode (Interpolator 1 only)

Only present on INTERP1 on each core. If CLAMP mode is enabled:

® L ANEO result is a shifted and masked ACCUMO, clamped by a lower bound of BASEQ and an upper bound of
BASET.

® Signedness of these comparisons is determined by LANEO_CTRL_SIGNED

Parameters
c Pointer to interpolation config
clamp Set true to enable clamp mode

interp_config_set_cross_input

]
4.1. Hardware APIs 154

Raspberry Pi Pico C/C++ SDK
]

static void interp_config_set_cross_input (interp_config * c, bool cross_input) [inline], [static]
Enable cross input.

Allows feeding of the accumulator content from the other lane back in to this lanes shift+mask hardware. This will take
effect even if the interp_config_set_add_raw option is set as the cross input mux is before the shift+mask bypass

Parameters
c Pointer to interpolation config
cross_input If true, enable the cross input.

interp_config_set_cross_result
static void interp_config_set_cross_result (interp_config * ¢, bool cross_result) [inline], [static]
Enable cross results.

Allows feeding of the other lane’s result into this lane’s accumulator on a POP operation.

Parameters
c Pointer to interpolation config
cross_result If true, enables the cross result

interp_config_set_force_bits
static void interp_config_set_force_bits (interp_config * ¢, uint bits) [inline], [static]
Set interpolator Force bits.
ORed into bits 29:28 of the lane result presented to the processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate sequence of pointers into flash or SRAM
Parameters
c Pointer to interpolation config
bits Sets the force bits to that specified. Range 0-3 (two bits)
interp_config_set_mask
static void interp_config_set_mask (interp_config * c, uint mask_lsb, uint mask_msb) [inline], [static]
Set the interpolator mask range.

Sets the range of bits (least to most) that are allowed to pass through the interpolator

Parameters
c Pointer to interpolation config
mask_lsb The least significant bit allowed to pass
mask_msb The most significant bit allowed to pass

interp_config_set_shift
static void interp_config_set_shift (interp_config * ¢, uint shift) [inline], [static]
Set the interpolator shift value.
Sets the number of bits the accumulator is shifted before masking, on each iteration.
Parameters

c Pointer to an interpolator config

shift Number of bits
interp_config_set_signed

static void interp_config_set_signed (interp_config * ¢, bool _signed) [inline], [static]

]
4.1. Hardware APIs 155

Raspberry Pi Pico C/C++ SDK

Set sign extension.

Enables signed mode, where the shifted and masked accumulator value is sign-extended to 32 bits before adding to
BASE1, and LANET PEEK/POP results appear extended to 32 bits when read by processor.

Parameters

c Pointer to interpolation config

_signed If true, enables sign extension
interp_default_config
static interp_config interp_default_config (void) [inline], [static]
Get a default configuration.
Returns
A default interpolation configuration
interp_set_config
static void interp_set_config (interp_hw_t * interp, uint lane, interp_config * config) [inline], [static]
Send configuration to a lane.

If an invalid configuration is specified (ie a lane specific item is set on wrong lane), depending on setup this function

can panic.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane to set
config Pointer to interpolation config

4.1.12. hardware_irq

Hardware interrupt handling.

4.1.12.1. Detailed Description

The RP2040 uses the standard ARM nested vectored interrupt controller (NVIC).
Interrupts are identified by a number from 0 to 31.
On the RP2040, only the lower 26 IRQ signals are connected on the NVIC; IRQs 26 to 31 are tied to zero (never firing).

There is one NVIC per core, and each core’s NVIC has the same hardware interrupt lines routed to it, with the exception
of the |0 interrupts where there is one 10 interrupt per bank, per core. These are completely independent, so, for
example, processor 0 can be interrupted by GPIO 0 in bank 0, and processor 1 by GPIO 1 in the same bank.

4.1. Hardware APIs 156

Raspberry Pi Pico C/C++ SDK

© NOTE

That all IRQ APIs affect the executing core only (i.e. the core calling the function).

You should not enable the same (shared) IRQ number on both cores, as this will lead to race conditions or starvation
of one of the cores. Additionally, don't forget that disabling interrupts on one core does not disable interrupts on the
other core.

There are three different ways to set handlers for an IRQ:

e Calling irq_add_shared_handler() at runtime to add a handler for a multiplexed interrupt (e.g. GPIO bank) on the
current core. Each handler, should check and clear the relevant hardware interrupt source

® Calling irg_set_exclusive_handler() at runtime to install a single handler for the interrupt on the current core

* Defining the interrupt handler explicitly in your application (e.g. by defining void isr_dma_o will make that function
the handler for the DMA_IRQ_0 on core 0, and you will not be able to change it using the above APIs at runtime).
Using this method can cause link conflicts at runtime, and offers no runtime performance benefit (i.e, it should not
generally be used).

O NoTE

If an IRQ is enabled and fires with no handler installed, a breakpoint will be hit and the IRQ number will be in register
r0.

Interrupt Numbers

Interrupts are numbered as follows, a set of defines is available (intctrl.h) with these names to avoid using the numbers
directly.

IRQ Interrupt Source
0 TIMER_IRQ_0

1 TIMER_IRQ_1

2 TIMER_IRQ_2

3 TIMER_IRQ_3

4 PWM_IRQ_WRAP
5 USBCTRL_IRQ

6 XIP_IRQ

7 PIO0_IRQ_0

8 PIO0_IRQ_1

9 PIO1_IRQ_0

10 PIO1_IRQ_1

11 DMA_IRQ_0

12 DMA_IRQ_1

13 10_IRQ_BANKO
14 10_IRQ_QSPI

15 SIO_IRQ_PROCO
16 SIO_IRQ_PROC1
17 CLOCKS_IRQ

18 SPIO_IRQ

]
4.1. Hardware APIs 157

Raspberry Pi Pico C/C++ SDK

IRQ Interrupt Source

19 SPIT_IRQ

20 UARTO_IRQ

21 UART1_IRQ

22 ADCO_IRQ_FIFO

23 12C0_IRQ

24 12C1_IRQ

25 RTC_IRQ
4.1.12.2. Typedefs

typedef void(* irq_handler_t)(void)

Interrupt handler function type.

4.1.12.3. Functions

void irq_set_priority (uint num, uint8_t hardware_priority)
Set specified interrupt’s priority.
uint irq_get_priority (uint num)
Get specified interrupt's priority.
void irq_set_enabled (uint num, bool enabled)
Enable or disable a specific interrupt on the executing core.
bool irq_is_enabled (uint num)

Determine if a specific interrupt is enabled on the executing core.

void irq_set_mask_enabled (uint32_t mask, bool enabled)

Enable/disable multiple interrupts on the executing core.
void irq_set_exclusive_handler (uint num, irq_handler_t handler)
Set an exclusive interrupt handler for an interrupt on the executing core.
irq_handler_t irq_get_exclusive_handler (uint num)
Get the exclusive interrupt handler for an interrupt on the executing core.
void irq_add_shared_handler (uint num, irq_handler_t handler, uint8_t order_priority)
Add a shared interrupt handler for an interrupt on the executing core.
void irq_remove_handler (uint num, irq_handler_t handler)
Remove a specific interrupt handler for the given irqg number on the executing core.
bool irq_has_shared_handler (uint num)
Determine if the current handler for the given number is shared.
irq_handler_t irq_get_vtable_handler (uint num)

Get the current IRQ handler for the specified IRQ from the currently installed hardware vector table (VTOR) of the
execution core.

static void irq_clear (uint int_num)

Clear a specific interrupt on the executing core.

4.1. Hardware APIs 158

Raspberry Pi Pico C/C++ SDK
]

void irq_set_pending (uint num)

Force an interrupt to be pending on the executing core.

void user_irq_claim (uint irq_num)

Claim ownership of a user IRQ on the calling core.

void user_irq_unclaim (uint irq_num)

Mark a user IRQ as no longer used on the calling core.

int user_irq_claim_unused (bool required)

Claim ownership of a free user IRQ on the calling core.

4.1.12.4. Typedef Documentation

4.1.12.4.1. irg_handler_t
typedef void(* irq_handler_t) (void)
Interrupt handler function type.

All interrupts handlers should be of this type, and follow normal ARM EABI register saving conventions

4.1.12.5. Function Documentation

4.1.12.5.1. irq_add_shared_handler

void irq_add_shared_handler (uint num, irq_handler_t handler, uint8_t order_priority)
Add a shared interrupt handler for an interrupt on the executing core.

Use this method to add a handler on an irq number shared between multiple distinct hardware sources (e.g. GPIO, DMA
or PIO IRQs). Handlers added by this method will all be called in sequence from highest order_priority to lowest. The
irq_set_exclusive_handler() method should be used instead if you know there will or should only ever be one handler for
the interrupt.

This method will assert if there is an exclusive interrupt handler set for this irq number on this core, or if the (total
across all IRQs on both cores) maximum (configurable via PICO_MAX_SHARED_IRQ_HANDLERS) number of shared
handlers would be exceeded.

Parameters
num Interrupt number Interrupt Numbers
handler The handler to set. See irg_handler_t
order_priority The order priority controls the order that handlers for the same IRQ number on the core are

called. The shared irq handlers for an interrupt are all called when an IRQ fires, however the
order of the calls is based on the order_priority (higher priorities are called first, identical
priorities are called in undefined order). A good rule of thumb is to use
PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY if you don’t much care, as it is in
the middle of the priority range by default.

]
4.1. Hardware APIs 159

Raspberry Pi Pico C/C++ SDK

© NOTE

The order_priority uses higher values for higher priorities which is the opposite of the CPU interrupt priorities passed
to irq_set_priority() which use lower values for higher priorities.

See also

irg_set_exclusive_handler()

4.1.12.5.2. irg_clear
static void irq_clear (uint int_num) [inline], [static]
Clear a specific interrupt on the executing core.

This method is only useful for "software" IRQs that are not connected to hardware (i.e. IRQs 26-31) as the the NVIC
always reflects the current state of the IRQ state of the hardware for hardware IRQs, and clearing of the IRQ state of the
hardware is performed via the hardware's registers instead.

Parameters

int_num Interrupt number Interrupt Numbers

4.1.12.5.3. irq_get_exclusive_handler
irq_handler_t irq_get_exclusive_handler (uint num)
Get the exclusive interrupt handler for an interrupt on the executing core.
This method will return an exclusive IRQ handler set on this core by irq_set_exclusive_handler if there is one.
Parameters
num Interrupt number Interrupt Numbers
See also
irg_set_exclusive_handler()
Returns

handler The handler if an exclusive handler is set for the IRQ, NULL if no handler is set or shared/shareable handlers are
installed

4.1.12.5.4. irq_get_priority
uint irq_get_priority (uint num)
Get specified interrupt’s priority.

Numerically-lower values indicate a higher priority. Hardware priorities range from 0 (highest priority) to 255 (lowest
priority) though only the top 2 bits are significant on ARM Cortex-M0+. To make it easier to specify higher or lower
priorities than the default, all IRQ priorities are initialized to PICO_DEFAULT_IRQ_PRIORITY by the SDK runtime at
startup. PICO_DEFAULT_IRQ_PRIORITY defaults to 0x80

Parameters
num Interrupt number Interrupt Numbers
Returns

the IRQ priority

]
4.1. Hardware APIs 160

Raspberry Pi Pico C/C++ SDK
]

4.1.12.5.5. irq_get_vtable_handler

irq_handler_t irq_get_vtable_handler (uint num)

Get the current IRQ handler for the specified IRQ from the currently installed hardware vector table (VTOR) of the
execution core.

Parameters
num Interrupt number Interrupt Numbers
Returns

the address stored in the VTABLE for the given irqg number

4.1.12.5.6. irq_has_shared_handler
bool irq_has_shared_handler (uint num)
Determine if the current handler for the given number is shared.
Parameters
num Interrupt number Interrupt Numbers
Returns

true if the specified IRQ has a shared handler

4.1.12.5.7. irq_is_enabled
bool irq_is_enabled (uint num)
Determine if a specific interrupt is enabled on the executing core.
Parameters
num Interrupt number Interrupt Numbers
Returns

true if the interrupt is enabled

4.1.12.5.8. irg_remove_handler
void irq_remove_handler (uint num, irq_handler_t handler)
Remove a specific interrupt handler for the given irg number on the executing core.

This method may be used to remove an irq set via either irq_set_exclusive_handler() or irq_add_shared_handler(), and
will assert if the handler is not currently installed for the given IRQ number

© NoTE

This method may only be called from user (non IRQ code) or from within the handler itself (i.e. an IRQ handler may
remove itself as part of handling the IRQ). Attempts to call from another IRQ will cause an assertion.

Parameters
num Interrupt number Interrupt Numbers
handler The handler to removed.

See also

]
4.1. Hardware APIs 161

Raspberry Pi Pico C/C++ SDK
]

irg_set_exclusive_handler()

irqg_add_shared_handler()

4.1.12.5.9. irq_set_enabled

void irq_set_enabled (uint num, bool enabled)

Enable or disable a specific interrupt on the executing core.

Parameters
num Interrupt number Interrupt Numbers
enabled true to enable the interrupt, false to disable

4.1.12.5.10. irg_set_exclusive_handler
void irq_set_exclusive_handler (uint num, irq_handler_t handler)
Set an exclusive interrupt handler for an interrupt on the executing core.

Use this method to set a handler for single IRQ source interrupts, or when your code, use case or performance
requirements dictate that there should no other handlers for the interrupt.

This method will assert if there is already any sort of interrupt handler installed for the specified irg number.

Parameters
num Interrupt number Interrupt Numbers
handler The handler to set. See irq_handler_t
See also

irg_add_shared_handler()

4.1.12.5.11. irg_set_mask_enabled

void irq_set_mask_enabled (uint32_t mask, bool enabled)

Enable/disable multiple interrupts on the executing core.

Parameters
mask 32-bit mask with one bits set for the interrupts to enable/disable Interrupt Numbers
enabled true to enable the interrupts, false to disable them.

4.1.12.5.12. irq_set_pending

void irq_set_pending (uint num)

Force an interrupt to be pending on the executing core.

This should generally not be used for IRQs connected to hardware.
Parameters

num Interrupt number Interrupt Numbers

]
4.1. Hardware APIs 162

Raspberry Pi Pico C/C++ SDK
]

4.1.12.5.13. irq_set_priority

void irq_set_priority (uint num, uint8_t hardware_priority)

Set specified interrupt’s priority.

Parameters
num Interrupt number Interrupt Numbers
hardware_priority Priority to set. Numerically-lower values indicate a higher priority. Hardware priorities range

from 0 (highest priority) to 255 (lowest priority) though only the top 2 bits are significant on
ARM Cortex-M0+. To make it easier to specify higher or lower priorities than the default, all
IRQ priorities are initialized to PICO_DEFAULT_IRQ_PRIORITY by the SDK runtime at startup.
PICO_DEFAULT_IRQ_PRIORITY defaults to 0x80

4.1.12.5.14. user_irg_claim

void user_irq_claim (uint irq_num)

Claim ownership of a user IRQ on the calling core.

User IRQs are numbered 26-31 and are not connected to any hardware, but can be triggered by irq_set_pending.

O NoOTE

User IRQs are a core local feature; they cannot be used to communicate between cores. Therfore all functions
dealing with Uer IRQs affect only the calling core

This method explicitly claims ownership of a user IRQ, so other code can know it is being used.
Parameters

irq_num the user IRQ to claim

4.1.12.5.15. user_irg_claim_unused

int user_irq_claim_unused (bool required)

Claim ownership of a free user IRQ on the calling core.

User IRQs are numbered 26-31 and are not connected to any hardware, but can be triggered by irq_set_pending.

© NoOTE

User IRQs are a core local feature; they cannot be used to communicate between cores. Therfore all functions
dealing with Uer IRQs affect only the calling core

This method explicitly claims ownership of an unused user IRQ if there is one, so other code can know it is being used.
Parameters

required if true the function will panic if none are available
Returns

the user IRQ number or -1 if required was false, and none were free

4.1.12.5.16. user_irq_unclaim

void user_irq_unclaim (uint irq_num)

]
4.1. Hardware APIs 163

Raspberry Pi Pico C/C++ SDK

Mark a user IRQ as no longer used on the calling core.

User IRQs are numbered 26-31 and are not connected to any hardware, but can be triggered by irq_set_pending.

© NoTE

User IRQs are a core local feature; they cannot be used to communicate between cores. Therfore all functions
dealing with Uer IRQs affect only the calling core

This method explicitly releases ownership of a user IRQ, so other code can know it is free to use.

© NOTE

it is customary to have disabled the irq and removed the handler prior to calling this method.

Parameters

irg_num the irq irg_num to unclaim

4.1.13. hardware_pio

Programmable 1/0 (PI10) API.

4.1.13.1. Detailed Description

A programmable input/output block (PIO) is a versatile hardware interface which can support a number of different 10
standards. There are two PIO blocks in the RP2040.

Each PIO is programmable in the same sense as a processor: the four state machines independently execute short,
sequential programs, to manipulate GPIOs and transfer data. Unlike a general purpose processor, PIO state machines
are highly specialised for 10, with a focus on determinism, precise timing, and close integration with fixed-function
hardware. Each state machine is equipped with:

* Two 32-bit shift registers — either direction, any shift count

® Two 32-bit scratch registers

® 4x32 bit bus FIFO in each direction (TX/RX), reconfigurable as 8x32 in a single direction
® Fractional clock divider (16 integer, 8 fractional bits)

® Flexible GPIO mapping

* DMA interface, sustained throughput up to 1 word per clock from system DMA

* |RQ flag set/clear/status
Full details of the PIO can be found in the RP2040 datasheet.

4.1.13.2. Modules

sm_config
P10 state machine configuration.
pio_instructions

PIO instruction encoding.

4.1. Hardware APIs 164

Raspberry Pi Pico C/C++ SDK
]

4.1.13.3. Macros

® fidefine piod piod_hw

® f#define piol piol_hw

4.1.13.4. Enumerations

enum pio_fifo_join { PIO_FIFO_JOIN_NONE = @, PIO_FIFO_JOIN_TX = 1, PIO_FIFO_JOIN RX = 2 }

FIFO join states.

enum pio_mov_status_type { STATUS_TX_LESSTHAN = @, STATUS_RX_LESSTHAN = 1 }

MOV status types.
enum pio_interrupt_source { pis_interrupt® = PIO_INTR_SM@_LSB, pis_interrupt1 = PIO_INTR_SM1_LSB, pis_interrupt2 =
PIO_INTR_SM2_LSB, pis_interrupt3 = PIO_INTR_SM3_LSB, pis_sm@_tx_fifo_not_full = PIO_INTR_SM@_TXNFULL_LSB,
pis_sm1_tx_fifo_not_full = PIO_INTR_SM1_TXNFULL_LSB, pis_sm2_tx_fifo_not_full = PIO_INTR_SM2_TXNFULL_LSB,
pis_sm3_tx_fifo_not_full = PIO_INTR_SM3_TXNFULL_LSB, pis_sm@_rx_fifo_not_empty = PIO_INTR_SM@_RXNEMPTY_LSB,
pis_sm1_rx_fifo_not_empty = PIO_INTR_SM1_RXNEMPTY_LSB, pis_sm2_rx_fifo_not_empty = PIO_INTR_SM2_RXNEMPTY_LSB,
pis_sm3_rx_fifo_not_empty = PIO_INTR_SM3_RXNEMPTY_LSB }

PIO interrupt source numbers for pio related IRQs.

4.1.13.5. Functions

static void pio_sm_set_config (PIO pio, uint sm, const pio_sm_config *config)

Apply a state machine configuration to a state machine.
static uvint pio_get_index (PIO pio)

Return the instance number of a PIO instance.
static void pio_gpio_init (PIO pio, uint pin)

Setup the function select for a GPIO to use output from the given P10 instance.
static uint pio_get_dreq (PIO pio, uint sm, bool is_tx)

Return the DREQ to use for pacing transfers to/from a particular state machine FIFO.
bool pio_can_add_program (PIO pio, const pio_program_t *program)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance.
bool pio_can_add_program_at_offset (PIO pio, const pio_program_t *program, uint offset)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at a
particular location.

uint pio_add_program (PIO pio, const pio_program_t *program)
Attempt to load the program, panicking if not possible.
void pio_add_program_at_offset (PIO pio, const pio_program_t *program, uint offset)
Attempt to load the program at the specified instruction memory offset, panicking if not possible.
void pio_remove_program (PIO pio, const pio_program_t *program, uint loaded_offset)
Remove a program from a PIO instance’s instruction memory.
void pio_clear_instruction_memory (PIO pio)
Clears all of a PIO instance’s instruction memory.
void pio_sm_init (PIO pio, uint sm, uint initial_pc, const pio_sm_config *config)

Resets the state machine to a consistent state, and configures it.

]
4.1. Hardware APIs 165

Raspberry Pi Pico C/C++ SDK
]

static void pio_sm_set_enabled (PIO pio, uint sm, bool enabled)

Enable or disable a PIO state machine.

static void pio_set_sm_mask_enabled (PIO pio, uint32_t mask, bool enabled)
Enable or disable multiple PIO state machines.

static void pio_sm_restart (PIO pio, uint sm)
Restart a state machine with a known state.

static void pio_restart_sm_mask (PIO pio, uint32_t mask)
Restart multiple state machine with a known state.

static void pio_sm_clkdiv_restart (PI0 pio, uint sm)
Restart a state machine’s clock divider from a phase of 0.

static void pio_clkdiv_restart_sm_mask (PIO pio, uint32_t mask)
Restart multiple state machines' clock dividers from a phase of 0.

static void pio_enable_sm_mask_in_sync (PIO pio, uint32_t mask)
Enable multiple PIO state machines synchronizing their clock dividers.

static void pio_set_irq@_source_enabled (PIO pio, enum pio_interrupt_source source, bool enabled)
Enable/Disable a single source on a PIO’s IRQ 0.

static void pio_set_irql_source_enabled (PIO pio, enum pio_interrupt_source source, bool enabled)
Enable/Disable a single source on a PIO’s IRQ 1.

static void pio_set_irq@_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled)
Enable/Disable multiple sources on a PIO’s IRQ 0.

static void pio_set_irql_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled)

Enable/Disable multiple sources on a PIO’s IRQ 1.

static void pio_set_irqn_source_enabled (PIO pio, uint irq_index, enum pio_interrupt_source source, bool enabled)

Enable/Disable a single source on a PI0’s specified (0/1) IRQ index.

static void pio_set_irqn_source_mask_enabled (PIO pio, uint irq_index, uint32_t source_mask, bool enabled)
Enable/Disable multiple sources on a PI0’s specified (0/1) IRQ index.
static bool pio_interrupt_get (PIO pio, uint pio_interrupt_num)
Determine if a particular PIO interrupt is set.
static void pio_interrupt_clear (PIO pio, uint pio_interrupt_num)
Clear a particular PIO interrupt.
static uint8_t pio_sm_get_pc (PIO pio, uint sm)
Return the current program counter for a state machine.
static void pio_sm_exec (PIO pio, uint sm, uint instr)
Immediately execute an instruction on a state machine.
static bool pio_sm_is_exec_stalled (PIO pio, uint sm)
Determine if an instruction set by pio_sm_exec() is stalled executing.
static void pio_sm_exec_wait_blocking (PIO pio, uint sm, uint instr)
Immediately execute an instruction on a state machine and wait for it to complete.
static void pio_sm_set_wrap (PIO pio, uint sm, uint wrap_target, uint wrap)

Set the current wrap configuration for a state machine.

]
4.1. Hardware APIs 166

Raspberry Pi Pico C/C++ SDK
]

static void pio_sm_set_out_pins (PIO pio, uint sm, uint out_base, uint out_count)
Set the current 'out’ pins for a state machine.
static void pio_sm_set_set_pins (PIO pio, uint sm, uint set_base, uint set_count)
Set the current 'set’ pins for a state machine.
static void pio_sm_set_in_pins (PIO pio, uint sm, uint in_base)
Set the current 'in’ pins for a state machine.
static void pio_sm_set_sideset_pins (PIO pio, uint sm, uint sideset_base)
Set the current 'sideset’ pins for a state machine.
static void pio_sm_put (PIO pio, uint sm, uint32_t data)
Write a word of data to a state machine’s TX FIFO.
static uint32_t pio_sm_get (PIO pio, uint sm)
Read a word of data from a state machine’s RX FIFO.
static bool pio_sm_is_rx_fifo_full (PIO pio, uint sm)
Determine if a state machine’s RX FIFO is full.
static bool pio_sm_is_rx_fifo_empty (PIO pio, uint sm)
Determine if a state machine’s RX FIFO is empty.
static vint pio_sm_get_rx_fifo_level (PIO pio, uint sm)
Return the number of elements currently in a state machine’s RX FIFO.
static bool pio_sm_is_tx_fifo_full (PIO pio, uint sm)
Determine if a state machine’s TX FIFO is full.
static bool pio_sm_is_tx_fifo_empty (PIO pio, uint sm)
Determine if a state machine’s TX FIFO is empty.
static vint pio_sm_get_tx_fifo_level (PIO pio, uint sm)
Return the number of elements currently in a state machine’s TX FIFO.
static void pio_sm_put_blocking (PIO pio, uint sm, uint32_t data)
Write a word of data to a state machine’s TX FIFO, blocking if the FIFO is full.
static uint32_t pio_sm_get_blocking (PIO pio, uint sm)
Read a word of data from a state machine’s RX FIFO, blocking if the FIFO is empty.
void pio_sm_drain_tx_fifo (PIO pio, uint sm)
Empty out a state machine’s TX FIFO.
static void pio_sm_set_clkdiv_int_frac (PIO pio, vint sm, uint16_t div_int, uint8_t div_frac)
set the current clock divider for a state machine using a 16:8 fraction
static void pio_sm_set_clkdiv (PIO pio, uint sm, float div)
set the current clock divider for a state machine
static void pio_sm_clear_fifos (PIO pio, uint sm)
Clear a state machine’s TX and RX FIFOs.
void pio_sm_set_pins (PIO pio, uint sm, uint32_t pin_values)
Use a state machine to set a value on all pins for the PIO instance.
void pio_sm_set_pins_with_mask (PIO pio, uint sm, uint32_t pin_values, uint32_t pin_mask)

Use a state machine to set a value on multiple pins for the PIO instance.

]
4.1. Hardware APIs 167

Raspberry Pi Pico C/C++ SDK

void pio_sm_set_pindirs_with_mask (PIO pio, uint sm, uint32_t pin_dirs, uint32_t pin_mask)

Use a state machine to set the pin directions for multiple pins for the PIO instance.

void pio_sm_set_consecutive_pindirs (PIO pio, uint sm, uint pin_base, uint pin_count, bool is_out)

Use a state machine to set the same pin direction for multiple consecutive pins for the PIO instance.

void pio_sm_claim (PIO pio, uint sm)

Mark a state machine as used.

void pio_claim_sm_mask (PIO pio, uint sm_mask)

Mark multiple state machines as used.

void pio_sm_unclaim (PIO pio, uint sm)

Mark a state machine as no longer used.

int pio_claim_unused_sm (PIO pio, bool required)

Claim a free state machine on a PIO instance.

bool pio_sm_is_claimed (PIO pio, uint sm)

Determine if a PIO state machine is claimed.

4.1.13.6. Macro Definition Documentation

4.1.13.6.1. pio0

#define pio@ piod_hw
Identifier for the first (PIO 0) hardware PIO instance (for use in PIO functions).

e.g. pio_gpio_init(pio0, 5)

4.1.13.6.2. pio1

#define piol piol_hw
Identifier for the second (PIO 1) hardware PIO instance (for use in PIO functions).

e.g. pio_gpio_init(pio1, 5)

4.1.13.7. Enumeration Type Documentation

4.1.13.7.1. pio_fifo_join

enum pio_fifo_join

FIFO join states.

4.1.13.7.2. pio_mov_status_type

enum pio_mov_status_type

MOV status types.

4.1. Hardware APIs

168

Raspberry Pi Pico C/C++ SDK
]

4.1.13.7.3. pio_interrupt_source

enum pio_interrupt_source

P10 interrupt source numbers for pio related IRQs.

4.1.13.8. Function Documentation

4.1.13.8.1. pio_add_program

uint pio_add_program (PIO pio, const pio_program_t * program)
Attempt to load the program, panicking if not possible.

See also

pio_can_add_program() if you need to check whether the program can be loaded

Parameters
pio The PIO instance; either pio0 or pio1
program the program definition

Returns

the instruction memory offset the program is loaded at

4.1.13.8.2. pio_add_program_at_offset

void pio_add_program_at_offset (PIO pio, const pio_program_t * program, uint offset)

Attempt to load the program at the specified instruction memory offset, panicking if not possible.
See also

pio_can_add_program_at_offset() if you need to check whether the program can be loaded

Parameters
pio The PIO instance; either pio0 or pio1
program the program definition
offset the instruction memory offset wanted for the start of the program

4.1.13.8.3. pio_can_add_program

bool pio_can_add_program (PIO pio, const pio_program_t * program)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance.

Parameters
pio The PIO instance; either pio0 or pio1
program the program definition

Returns

true if the program can be loaded; false if there is not suitable space in the instruction memory

]
4.1. Hardware APIs 169

Raspberry Pi Pico C/C++ SDK
]

4.1.13.8.4. pio_can_add_program_at_offset

bool pio_can_add_program_at_offset (PIO pio, const pio_program_t * program, uint offset)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at a
particular location.

Parameters

pio The PIO instance; either pio0 or pio1

program the program definition

offset the instruction memory offset wanted for the start of the program
Returns

true if the program can be loaded at that location; false if there is not space in the instruction memory

4.1.13.8.5. pio_claim_sm_mask
void pio_claim_sm_mask (PIO pio, uint sm_mask)
Mark multiple state machines as used.

Method for cooperative claiming of hardware. Will cause a panic if any of the state machines are already claimed. Use
of this method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters
pio The PIO instance; either pio0 or pio1
sm_mask Mask of state machine indexes

4.1.13.8.6. pio_claim_unused_sm

int pio_claim_unused_sm (PIO pio, bool required)

Claim a free state machine on a PIO instance.

Parameters

pio The PIO instance; either pio0 or pio1

required if true the function will panic if none are available
Returns

the state machine index or -1 if required was false, and none were free

4.1.13.8.7. pio_clear_instruction_memory
void pio_clear_instruction_memory (PIO pio)
Clears all of a PIO instance’s instruction memory.
Parameters

pio The PIO instance; either pio0 or pio1

4.1.13.8.8. pio_clkdiv_restart_sm_mask

static void pio_clkdiv_restart_sm_mask (PIO pio, uint32_t mask) [inline], [static]

Restart multiple state machines' clock dividers from a phase of 0.

]
4.1. Hardware APIs 170

Raspberry Pi Pico C/C++ SDK
]

Each state machine’s clock divider is a free-running piece of hardware, that generates a pattern of clock enable pulses
for the state machine, based only on the configured integer/fractional divisor. The pattern of running/halted cycles
slows the state machine’s execution to some controlled rate.

This function simultaneously clears the integer and fractional phase accumulators of multiple state machines' clock
dividers. If these state machines all have the same integer and fractional divisors configured, their clock dividers will run
in precise deterministic lockstep from this point.

With their execution clocks synchronised in this way, it is then safe to e.g. have multiple state machines performing a
'wait irq' on the same flag, and all clear it on the same cycle.

Also note that this function can be called whilst state machines are running (e.g. if you have just changed the clock
divisors of some state machines and wish to resynchronise them), and that disabling a state machine does not halt its
clock divider: that is, if multiple state machines have their clocks synchronised, you can safely disable and reenable one
of the state machines without losing synchronisation.

Parameters
pio The PIO instance; either pio0 or pio1
mask bit mask of state machine indexes to modify the enabled state of

4.1.13.8.9. pio_enable_sm_mask_in_sync
static void pio_enable_sm_mask_in_sync (PIO pio, uint32_t mask) [inline], [static]
Enable multiple PIO state machines synchronizing their clock dividers.

This is equivalent to calling both pio_set_sm_mask_enabled() and pio_clkdiv_restart_sm_mask() on the same clock
cycle. All state machines specified by 'mask’ are started simultaneously and, assuming they have the same clock
divisors, their divided clocks will stay precisely synchronised.

Parameters
pio The PIO instance; either pio0 or pio1
mask bit mask of state machine indexes to modify the enabled state of

4.1.13.8.10. pio_get_dreq

static uint pio_get_dreq (PIO pio, uint sm, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular state machine FIFO.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
is_tx true for sending data to the state machine, false for receiving data from the state machine

4.1.13.8.11. pio_get_index
static uint pio_get_index (PIO pio) [inline], [static]
Return the instance number of a PIO instance.
Parameters

pio The PIO instance; either pio0 or pio1
Returns

the PIO instance number (either 0 or 1)

]
4.1. Hardware APIs 171

Raspberry Pi Pico C/C++ SDK

4.1.13.8.12. pio_gpio_init
static void pio_gpio_init (PIO pio, uint pin) [inline], [static]
Setup the function select for a GPIO to use output from the given PIO instance.

PIO appears as an alternate function in the GPIO muxing, just like an SPI or UART. This function configures that
multiplexing to connect a given PIO instance to a GPIO. Note that this is not necessary for a state machine to be able to
read the input value from a GPIO, but only for it to set the output value or output enable.

Parameters
pio The PIO instance; either pio0 or pio1

pin the GPIO pin whose function select to set

4.1.13.8.13. pio_interrupt_clear

static void pio_interrupt_clear (PIO pio, uint pio_interrupt_num) [inline], [static]

Clear a particular PIO interrupt.

Parameters
pio The PIO instance; either pio0 or pio1
pio_interrupt_num the PIO interrupt number 0-7

4.1.13.8.14. pio_interrupt_get

static bool pio_interrupt_get (PIO pio, uint pio_interrupt_num) [inline], [static]

Determine if a particular PIO interrupt is set.

Parameters
pio The PIO instance; either pio0 or pio1
pio_interrupt_num the P10 interrupt number 0-7
Returns

true if corresponding PIO interrupt is currently set

4.1.13.8.15. pio_remove_program

void pio_remove_program (PIO pio, const pio_program_t * program, uint loaded_offset)

Remove a program from a PIO instance’s instruction memory.

Parameters
pio The PIO instance; either pio0 or pio1
program the program definition
loaded_offset the loaded offset returned when the program was added

4.1.13.8.16. pio_restart_sm_mask
static void pio_restart_sm_mask (PIO pio, uint32_t mask) [inline], [static]
Restart multiple state machine with a known state.

This method clears the ISR, shift counters, clock divider counter pin write flags, delay counter, latched EXEC instruction,

4.1. Hardware APIs 172

Raspberry Pi Pico C/C++ SDK

and IRQ wait condition.

Parameters
pio The PIO instance; either pio0 or pio1
mask bit mask of state machine indexes to modify the enabled state of

4.1.13.8.17. pio_set_irq0_source_enabled

static void pio_set_irq@_source_enabled (PIO pio, enum pio_interrupt_source source, bool enabled) [inline], [static]

Enable/Disable a single source on a PIO’s IRQ 0.

Parameters
pio The PIO instance; either pio0 or pio1
source the source number (see pio_interrupt_source)
enabled true to enable IRQ 0 for the source, false to disable.

4.1.13.8.18. pio_set_irq0_source_mask_enabled

static void pio_set_irq@_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled) [inline], [static]

Enable/Disable multiple sources on a PIO’s IRQ 0.

Parameters
pio The PIO instance; either pio0 or pio1
source_mask Mask of bits, one for each source number (see pio_interrupt_source) to affect
enabled true to enable all the sources specified in the mask on IRQ 0, false to disable all the sources

specified in the mask on IRQ 0

4.1.13.8.19. pio_set_irq1_source_enabled

static void pio_set_irql_source_enabled (PIO pio, enum pio_interrupt_source source, bool enabled) [inline], [static]

Enable/Disable a single source on a PIO’s IRQ 1.

Parameters
pio The PIO instance; either pio0 or pio1
source the source number (see pio_interrupt_source)
enabled true to enable IRQ 0 for the source, false to disable.

4.1.13.8.20. pio_set_irq1_source_mask_enabled

static void pio_set_irql_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled) [inline], [static]

Enable/Disable multiple sources on a PIO’s IRQ 1.

Parameters
pio The PIO instance; either pio0 or pio1
source_mask Mask of bits, one for each source number (see pio_interrupt_source) to affect
enabled true to enable all the sources specified in the mask on IRQ 1, false to disable all the source

specified in the mask on IRQ 1

4.1. Hardware APIs 173

Raspberry Pi Pico C/C++ SDK

4.1.13.8.21. pio_set_irqn_source_enabled

static void pio_set_irgn_source_enabled (PIO pio, uint irq_index, enum pio_interrupt_source source, bool enabled)
[inline], [static]

Enable/Disable a single source on a PI0’s specified (0/1) IRQ index.
Parameters

pio The PIO instance; either pio0 or pio1

irq_index the IRQ index; either 0 or 1

source the source number (see pio_interrupt_source)

enabled true to enable the source on the specified IRQ, false to disable.

4.1.13.8.22. pio_set_irqn_source_mask_enabled

static void pio_set_irqn_source_mask_enabled (PI0O pio, uint dirq_index, uint32_t source_mask, bool enabled) [inline],
[static]

Enable/Disable multiple sources on a PIO’s specified (0/1) IRQ index.

Parameters
pio The PIO instance; either pio0 or pio1
irq_index the IRQ index; either 0 or 1
source_mask Mask of bits, one for each source number (see pio_interrupt_source) to affect
enabled true to enable all the sources specified in the mask on the specified IRQ, false to disable all the

sources specified in the mask on the specified IRQ

4.1.13.8.23. pio_set_sm_mask_enabled
static void pio_set_sm_mask_enabled (PIO pio, uint32_t mask, bool enabled) [inline], [static]
Enable or disable multiple PIO state machines.

Note that this method just sets the enabled state of the state machine; if now enabled they continue exactly from where
they left off.

See also

pio_enable_sm_mask_in_sync() if you wish to enable multiple state machines and ensure their clock dividers are in

sync.

Parameters
pio The PIO instance; either pio0 or pio1
mask bit mask of state machine indexes to modify the enabled state of
enabled true to enable the state machines; false to disable

4.1.13.8.24. pio_sm_claim
void pio_sm_claim (PIO pio, uint sm)
Mark a state machine as used.

Method for cooperative claiming of hardware. Will cause a panic if the state machine is already claimed. Use of this
method by libraries detects accidental configurations that would fail in unpredictable ways.

4.1. Hardware APIs 174

Raspberry Pi Pico C/C++ SDK
]

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)

4.1.13.8.25. pio_sm_clear_fifos
static void pio_sm_clear_fifos (PIO pio, uint sm) [inline], [static]
Clear a state machine’s TX and RX FIFOs.
Parameters
pio The PIO instance; either pio0 or pio1

sm State machine index (0..3)

4.1.13.8.26. pio_sm_clkdiv_restart
static void pio_sm_clkdiv_restart (PIO pio, uint sm) [inline], [static]
Restart a state machine’s clock divider from a phase of 0.

Each state machine’s clock divider is a free-running piece of hardware, that generates a pattern of clock enable pulses
for the state machine, based only on the configured integer/fractional divisor. The pattern of running/halted cycles
slows the state machine’s execution to some controlled rate.

This function clears the divider's integer and fractional phase accumulators so that it restarts this pattern from the
beginning. It is called automatically by pio_sm_init() but can also be called at a later time, when you enable the state
machine, to ensure precisely consistent timing each time you load and run a given PIO program.

More commonly this hardware mechanism is used to synchronise the execution clocks of multiple state machines -
see pio_clkdiv_restart_sm_mask().

Parameters
pio The PIO instance; either pio0 or pio1

sm State machine index (0..3)

4.1.13.8.27. pio_sm_drain_tx_fifo
void pio_sm_drain_tx_fifo (PIO pio, uint sm)
Empty out a state machine’s TX FIFO.

This method executes pull instructions on the state machine until the TX FIFO is empty. This disturbs the contents of
the OSR, so see also pio_sm_clear_fifos() which clears both FIFOs but leaves the state machine’s internal state
undisturbed.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)

See also

pio_sm_clear_fifos()

]
4.1. Hardware APIs 175

Raspberry Pi Pico C/C++ SDK

4.1.13.8.28. pio_sm_exec
static void pio_sm_exec (PIO pio, uint sm, uint instr) [inline], [static]
Immediately execute an instruction on a state machine.

This instruction is executed instead of the next instruction in the normal control flow on the state machine. Subsequent
calls to this method replace the previous executed instruction if it is still running.

See also

pio_sm_is_exec_stalled() to see if an executed instruction is still running (i.e. it is stalled on some condition)

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
instr the encoded PIO instruction

4.1.13.8.29. pio_sm_exec_wait_blocking
static void pio_sm_exec_wait_blocking (PIO pio, uint sm, uint instr) [inline], [static]
Immediately execute an instruction on a state machine and wait for it to complete.

This instruction is executed instead of the next instruction in the normal control flow on the state machine. Subsequent
calls to this method replace the previous executed instruction if it is still running.

See also

pio_sm_is_exec_stalled() to see if an executed instruction is still running (i.e. it is stalled on some condition)

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
instr the encoded PIO instruction

4.1.13.8.30. pio_sm_get
static uint32_t pio_sm_get (PIO pio, uint sm) [inline], [static]
Read a word of data from a state machine’s RX FIFO.

This is a raw FIFO access that does not check for emptiness. If the FIFO is empty, the hardware ignores the attempt to
read from the FIFO (the FIFO remains in an empty state following the read) and the sticky RXUNDER flag for this FIFO is
set in FDEBUG to indicate that the system tried to read from this FIFO when empty. The data returned by this function is
undefined when the FIFO is empty.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)

See also

pio_sm_get_blocking()

4.1. Hardware APIs 176

Raspberry Pi Pico C/C++ SDK
]

4.1.13.8.31. pio_sm_get_blocking

static uint32_t pio_sm_get_blocking (PIO pio, uint sm) [inline], [static]

Read a word of data from a state machine’s RX FIFO, blocking if the FIFO is empty.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)

4.1.13.8.32. pio_sm_get_pc
static uint8_t pio_sm_get_pc (PIO pio, uint sm) [inline], [static]
Return the current program counter for a state machine.
Parameters

pio The PIO instance; either pio0 or pio1

sm State machine index (0..3)
Returns

the program counter

4.1.13.8.33. pio_sm_get_rx_fifo_level

static uint pio_sm_get_rx_fifo_level (PIO pio, uint sm) [inline], [static]

Return the number of elements currently in a state machine’s RX FIFO.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)

Returns

the number of elements in the RX FIFO

4.1.13.8.34. pio_sm_get_tx_fifo_level

static uint pio_sm_get_tx_fifo_level (PIO pio, uint sm) [inline], [static]

Return the number of elements currently in a state machine’s TX FIFO.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)

Returns

the number of elements in the TX FIFO

4.1.13.8.35. pio_sm_init
void pio_sm_init (PIO pio, uint sm, uint initial_pc, const pio_sm_config * config)

Resets the state machine to a consistent state, and configures it.

]
4.1. Hardware APIs 177

Raspberry Pi Pico C/C++ SDK
]

This method:
* Disables the state machine (if running)
® Clears the FIFOs
* Applies the configuration specified by 'config'
® Resets any internal state e.g. shift counters

® Jumps to the initial program location given by 'initial_pc'
The state machine is left disabled on return from this call.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
initial_pc the initial program memory offset to run from
config the configuration to apply (or NULL to apply defaults)

4.1.13.8.36. pio_sm_is_claimed

bool pio_sm_is_claimed (PI0 pio, uint sm)

Determine if a PIO state machine is claimed.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)

Returns

true if claimed, false otherwise
See also
pio_sm_claim

pio_claim_sm_mask

4.1.13.8.37. pio_sm_is_exec_stalled
static bool pio_sm_is_exec_stalled (PIO pio, uint sm) [inline], [static]
Determine if an instruction set by pio_sm_exec() is stalled executing.
Parameters

pio The PIO instance; either pio0 or pio1

sm State machine index (0..3)
Returns

true if the executed instruction is still running (stalled)

4.1.13.8.38. pio_sm_is_rx_fifo_empty

static bool pio_sm_is_rx_fifo_empty (PIO pio, uint sm) [inline], [static]
Determine if a state machine’s RX FIFO is empty.

Parameters

]
4.1. Hardware APIs 178

Raspberry Pi Pico C/C++ SDK
]

pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
Returns

true if the RX FIFO is empty

4.1.13.8.39. pio_sm_is_rx_fifo_full
static bool pio_sm_is_rx_fifo_full (PIO pio, uint sm) [inline], [static]
Determine if a state machine’s RX FIFO is full.
Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
Returns

true if the RX FIFO is full

4.1.13.8.40. pio_sm_is_tx_fifo_empty

static bool pio_sm_is_tx_fifo_empty (PIO pio, uint sm) [inline], [static]

Determine if a state machine’s TX FIFO is empty.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)

Returns

true if the TX FIFO is empty

4.1.13.8.41. pio_sm_is_tx_fifo_full
static bool pio_sm_is_tx_fifo_full (PIO pio, uint sm) [inline], [static]
Determine if a state machine’s TX FIFO is full.
Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
Returns

true if the TX FIFO is full

4.1.13.8.42. pio_sm_put

static void pio_sm_put (PIO pio, uint sm, uint32_t data) [inline], [static]
Write a word of data to a state machine’s TX FIFO.

This is a raw FIFO access that does not check for fullness. If the FIFO is full, the FIFO contents and state are not
affected by the write attempt. Hardware sets the TXOVER sticky flag for this FIFO in FDEBUG, to indicate that the
system attempted to write to a full FIFO.

]
4.1. Hardware APIs 179

Raspberry Pi Pico C/C++ SDK

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)

data the 32 bit data value
See also

pio_sm_put_blocking()

4.1.13.8.43. pio_sm_put_blocking

static void pio_sm_put_blocking (PIO pio, uint sm, uint32_t data) [inline], [static]

Write a word of data to a state machine’s TX FIFO, blocking if the FIFO is full.

Parameters
pio The PIO instance; either pio0 or piol
sm State machine index (0..3)

data the 32 bit data value

4.1.13.8.44. pio_sm_restart
static void pio_sm_restart (PIO pio, uint sm) [inline], [static]
Restart a state machine with a known state.

This method clears the ISR, shift counters, clock divider counter pin write flags, delay counter, latched EXEC instruction,
and IRQ wait condition.

Parameters
pio The PIO instance; either pio0 or pio1

sm State machine index (0..3)

4.1.13.8.45. pio_sm_set_clkdiv

static void pio_sm_set_clkdiv (PIO pio, uint sm, float div) [inline], [static]

set the current clock divider for a state machine

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
div the floating point clock divider

4.1.13.8.46. pio_sm_set_clkdiv_int_frac

static void pio_sm_set_clkdiv_int_frac (PIO pio, uint sm, uint16_t div_int, uint8_t div_frac) [inline], [static]
set the current clock divider for a state machine using a 16:8 fraction

Parameters

pio The PIO instance; either pio0 or pio1

4.1. Hardware APIs 180

Raspberry Pi Pico C/C++ SDK

sm State machine index (0..3)
div_int the integer part of the clock divider

div_frac the fractional part of the clock divider in 1/256s

4.1.13.8.47. pio_sm_set_config

static void pio_sm_set_config (PIO pio, uint sm, const pio_sm_config * config) [inline], [static]

Apply a state machine configuration to a state machine.

Parameters
pio Handle to PIO instance; either pio0 or pio1
sm State machine index (0..3)
config the configuration to apply

4.1.13.8.48. pio_sm_set_consecutive_pindirs
void pio_sm_set_consecutive_pindirs (PIO pio, uint sm, uint pin_base, uint pin_count, bool is_out)
Use a state machine to set the same pin direction for multiple consecutive pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
the pin direction on consecutive pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin directions, and should not be used against a state machine
that is enabled.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3) to use
pin_base the first pin to set a direction for
pin_count the count of consecutive pins to set the direction for
is_out the direction to set; true = out, false = in

4.1.13.8.49. pio_sm_set_enabled

static void pio_sm_set_enabled (PIO pio, uint sm, bool enabled) [inline], [static]

Enable or disable a PIO state machine.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
enabled true to enable the state machine; false to disable

4.1.13.8.50. pio_sm_set_in_pins
static void pio_sm_set_in_pins (PIO pio, uint sm, uint in_base) [inline], [static]
Set the current 'in' pins for a state machine.

Can overlap with the 'out’, 'set' and 'sideset' pins

4.1. Hardware APIs 181

Raspberry Pi Pico C/C++ SDK

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
in_base 0-31 First pin to use as input

4.1.13.8.51. pio_sm_set_out_pins
static void pio_sm_set_out_pins (PIO pio, uint sm, uint out_base, uint out_count) [inline], [static]
Set the current 'out’ pins for a state machine.

Can overlap with the 'in', 'set' and 'sideset' pins

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
out_base 0-31 First pin to set as output
out_count 0-32 Number of pins to set.

4.1.13.8.52. pio_sm_set_pindirs_with_mask
void pio_sm_set_pindirs_with_mask (PIO pio, uint sm, uint32_t pin_dirs, uint32_t pin_mask)
Use a state machine to set the pin directions for multiple pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
pin directions on up to 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin directions, and should not be used against a state machine
that is enabled.

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3) to use
pin_dirs the pin directions to set - 1 = out, 0 = in (if the corresponding bit in pin_mask is set)
pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied.

4.1.13.8.53. pio_sm_set_pins
void pio_sm_set_pins (PIO pio, uint sm, uint32_t pin_values)
Use a state machine to set a value on all pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
values on all 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin states, and should not be used against a state machine that

is enabled.

Parameters
pio The PIO instance; either pio0 or piol
sm State machine index (0..3) to use

4.1. Hardware APIs 182

Raspberry Pi Pico C/C++ SDK

pin_values the pin values to set

4.1.13.8.54. pio_sm_set_pins_with_mask
void pio_sm_set_pins_with_mask (PIO pio, uint sm, uint32_t pin_values, uint32_t pin_mask)
Use a state machine to set a value on multiple pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
values on up to 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin states, and should not be used against a state machine that

is enabled.
Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3) to use
pin_values the pin values to set (if the corresponding bit in pin_mask is set)
pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied.

4.1.13.8.55. pio_sm_set_set_pins

static void pio_sm_set_set_pins (PIO pio, uint sm, uint set_base, uint set_count) [inline], [static]
Set the current 'set’ pins for a state machine.

Can overlap with the 'in’, 'out' and 'sideset’ pins

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
set_base 0-31 First pin to set as
set_count 0-5 Number of pins to set.

4.1.13.8.56. pio_sm_set_sideset_pins
static void pio_sm_set_sideset_pins (PIO pio, uint sm, uint sideset_base) [inline], [static]
Set the current 'sideset’ pins for a state machine.

Can overlap with the 'in', 'out' and 'set' pins

Parameters
pio The PIO instance; either pio0 or pio1
sm State machine index (0..3)
sideset_base 0-31 base pin for 'side set'

4.1.13.8.57. pio_sm_set_wrap
static void pio_sm_set_wrap (PIO pio, uint sm, uint wrap_target, uint wrap) [inline], [static]
Set the current wrap configuration for a state machine.

Parameters

4.1. Hardware APIs 183

Raspberry Pi Pico C/C++ SDK
]

pio The PIO instance; either pio0 or pio1

sm State machine index (0..3)

wrap_target the instruction memory address to wrap to

wrap the instruction memory address after which to set the program counter to wrap_target if the

instruction does not itself update the program_counter

4.1.13.8.58. pio_sm_unclaim
void pio_sm_unclaim (PIO pio, uint sm)
Mark a state machine as no longer used.
Method for cooperative claiming of hardware.
Parameters

pio The PIO instance; either pio0 or pio1

sm State machine index (0..3)

4.1.13.9. sm_config

P10 state machine configuration.

4.1.13.9.1. Detailed Description

A PIO block needs to be configured, these functions provide helpers to set up configuration structures. See
pio_sm_set_config

4.1.13.9.2. Functions
static void sm_config_set_out_pins (pio_sm_config *c, uint out_base, uint out_count)
Set the 'out’ pins in a state machine configuration.
static void sm_config_set_set_pins (pio_sm_config *c, uint set_base, uint set_count)
Set the 'set' pins in a state machine configuration.
static void sm_config_set_in_pins (pio_sm_config *c, uint in_base)
Set the 'in’ pins in a state machine configuration.
static void sm_config_set_sideset_pins (pio_sm_config *c, uint sideset_base)
Set the 'sideset' pins in a state machine configuration.
static void sm_config_set_sideset (pio_sm_config *c, uint bit_count, bool optional, bool pindirs)
Set the 'sideset' options in a state machine configuration.
static void sm_config_set_clkdiv_int_frac (pio_sm_config *c, uint16_t div_int, uint8_t div_frac)
Set the state machine clock divider (from integer and fractional parts - 16:8) in a state machine configuration.
static void sm_config_set_clkdiv (pio_sm_config *c, float div)
Set the state machine clock divider (from a floating point value) in a state machine configuration.
static void sm_config_set_wrap (pio_sm_config *c, uint wrap_target, uint wrap)

Set the wrap addresses in a state machine configuration.

]
4.1. Hardware APIs 184

Raspberry Pi Pico C/C++ SDK
]

static void sm_config_set_jmp_pin (pio_sm_config *c, uint pin)

Set the 'jmp’ pin in a state machine configuration.

static void sm_config_set_in_shift (pio_sm_config *c, bool shift_right, bool autopush, uint push_threshold)

Setup 'in’ shifting parameters in a state machine configuration.

static void sm_config_set_out_shift (pio_sm_config *c, bool shift_right, bool autopull, uint pull_threshold)

Setup 'out’ shifting parameters in a state machine configuration.

static void sm_config_set_fifo_join (pio_sm_config *c, enum pio_fifo_join join)

Setup the FIFO joining in a state machine configuration.

static void sm_config_set_out_special (pio_sm_config *c, bool sticky, bool has_enable_pin, uint enable_pin_index)

Set special 'out' operations in a state machine configuration.

static void sm_config_set_mov_status (pio_sm_config *c, enum pio_mov_status_type status_sel, uint status_n)

Set source for 'mov status' in a state machine configuration.

static pio_sm_config pio_get_default_sm_config (void)

Get the default state machine configuration.

4.1.13.9.3. Function Documentation

pio_get_default_sm_config
static pio_sm_config pio_get_default_sm_config (void) [inline], [static]

Get the default state machine configuration.

Setting Default

Out Pins 32 starting at 0

Set Pins 0 starting at 0

In Pins (base) 0

Side Set Pins (base) 0

Side Set disabled

Wrap wrap=31, wrap_to=0

In Shift shift_direction=right, autopush=false, push_threshold=32
Out Shift shift_direction=right, autopull=false, pull_threshold=32
Jmp Pin 0

Out Special sticky=false, has_enable_pin=false, enable_pin_index=0
Mov Status status_sel=STATUS_TX_LESSTHAN, n=0
Returns

the default state machine configuration which can then be modified.

sm_config_set_clkdiv

static void sm_config_set_clkdiv (pio_sm_config * ¢, float div) [inline], [static]

Set the state machine clock divider (from a floating point value) in a state machine configuration.

The clock divider slows the state machine’s execution by masking the system clock on some cycles, in a repeating
pattern, so that the state machine does not advance. Effectively this produces a slower clock for the state machine to
run from, which can be used to generate e.g. a particular UART baud rate. See the datasheet for further detail.

]
4.1. Hardware APIs 185

Raspberry Pi Pico C/C++ SDK
]

Parameters
c Pointer to the configuration structure to modify
div The fractional divisor to be set. 1 for full speed. An integer clock divisor of n will cause the state machine

torun 1 cycle in every n. Note that for small n, the jitter introduced by a fractional divider (e.g. 2.5) may be
unacceptable although it will depend on the use case.

sm_config_set_clkdiv_int_frac
static void sm_config_set_clkdiv_int_frac (pio_sm_config * c, uint16_t div_int, uint8_t div_frac) [inline], [static]
Set the state machine clock divider (from integer and fractional parts - 16:8) in a state machine configuration.

The clock divider can slow the state machine’s execution to some rate below the system clock frequency, by enabling
the state machine on some cycles but not on others, in a regular pattern. This can be used to generate e.g. a given
UART baud rate. See the datasheet for further detail.

Parameters
c Pointer to the configuration structure to modify
div_int Integer part of the divisor

div_frac Fractional part in 1/256ths
See also
sm_config_set_clkdiv()
sm_config_set_fifo_join
static void sm_config_set_fifo_join (pio_sm_config * ¢, enum pio_fifo_join join) [inline], [static]
Setup the FIFO joining in a state machine configuration.
Parameters
c Pointer to the configuration structure to modify
join Specifies the join type.
See also
enum pio_fifo_join
sm_config_set_in_pins
static void sm_config_set_in_pins (pio_sm_config * ¢, uint in_base) [inline], [static]
Set the 'in’ pins in a state machine configuration.

Can overlap with the 'out’, 'set' and 'sideset' pins

Parameters
c Pointer to the configuration structure to modify
in_base 0-31 First pin to use as input

sm_config_set_in_shift

static void sm_config_set_in_shift (pio_sm_config * ¢, bool shift_right, bool autopush, uint push_threshold) [inline]
[static]

Setup 'in’ shifting parameters in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
shift_right true to shift ISR to right, false to shift ISR to left

]
4.1. Hardware APIs 186

Raspberry Pi Pico C/C++ SDK
]

autopush whether autopush is enabled

push_threshold threshold in bits to shift in before auto/conditional re-pushing of the ISR
sm_config_set_jmp_pin
static void sm_config_set_jmp_pin (pio_sm_config * ¢, uint pin) [inline], [static]

Set the jmp' pin in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
pin The raw GPIO pin number to use as the source for a jmp pin instruction

sm_config_set_mov_status

static void sm_config_set_mov_status (pio_sm_config * c, enum pio_mov_status_type status_sel, uint status_n) [inline]
[static]

Set source for 'mov status' in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
status_sel the status operation selector.

See also

enum pio_mov_status_type
Parameters

status_n parameter for the mov status operation (currently a bit count)
sm_config_set_out_pins
static void sm_config_set_out_pins (pio_sm_config * c, uint out_base, uint out_count) [inline], [static]
Set the 'out’ pins in a state machine configuration.

Can overlap with the 'in’, 'set’ and 'sideset’ pins

Parameters
c Pointer to the configuration structure to modify
out_base 0-31 First pin to set as output
out_count 0-32 Number of pins to set.

sm_config_set_out_shift

static void sm_config_set_out_shift (pio_sm_config * ¢, bool shift_right, bool autopull, uint pull_threshold) [inline],
[static]

Setup 'out’ shifting parameters in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
shift_right true to shift OSR to right, false to shift OSR to left
autopull whether autopull is enabled

pull_threshold threshold in bits to shift out before auto/conditional re-pulling of the OSR
sm_config_set_out_special

static void sm_config_set_out_special (pio_sm_config * ¢, bool sticky, bool has_enable_pin, uint enable_pin_index)
[inline], [static]

]
4.1. Hardware APIs 187

Raspberry Pi Pico C/C++ SDK
]

Set special 'out' operations in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
sticky to enable 'sticky' output (i.e. re-asserting most recent OUT/SET pin values on subsequent
cycles)
has_enable_pin true to enable auxiliary OUT enable pin
enable_pin_index pin index for auxiliary OUT enable

sm_config_set_set_pins
static void sm_config_set_set_pins (pio_sm_config * c, uint set_base, uint set_count) [inline], [static]
Set the 'set' pins in a state machine configuration.

Can overlap with the 'in’, 'out’ and 'sideset' pins

Parameters
c Pointer to the configuration structure to modify
set_base 0-31 First pin to set as
set_count 0-5 Number of pins to set.

sm_config_set_sideset
static void sm_config_set_sideset (pio_sm_config * ¢, uint bit_count, bool optional, bool pindirs) [inline], [static]

Set the 'sideset’ options in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
bit_count Number of bits to steal from delay field in the instruction for use of side set (max 5)
optional True if the topmost side set bit is used as a flag for whether to apply side set on that instruction
pindirs True if the side set affects pin directions rather than values

sm_config_set_sideset_pins
static void sm_config_set_sideset_pins (pio_sm_config * ¢, uint sideset_base) [inline], [static]
Set the 'sideset’ pins in a state machine configuration.

Can overlap with the 'in’, 'out' and 'set’ pins

Parameters
c Pointer to the configuration structure to modify
sideset_base 0-31 base pin for 'side set'

sm_config_set_wrap
static void sm_config_set_wrap (pio_sm_config * ¢, uint wrap_target, uint wrap) [inline], [static]

Set the wrap addresses in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
wrap_target the instruction memory address to wrap to
wrap the instruction memory address after which to set the program counter to wrap_target if the

instruction does not itself update the program_counter

]
4.1. Hardware APIs 188

Raspberry Pi Pico C/C++ SDK
]

4.1.13.9.4. pio_instructions

P10 instruction encoding.
Detailed Description

Functions for generating PIO instruction encodings programmatically. In debug builds
PARAM_ASSERTIONS_ENABLED_PIO_INSTRUCTIONS can be set to 1 to enable validation of encoding function parameters.

For fuller descriptions of the instructions in question see the "RP2040 Datasheet"
Enumerations

enum pio_src_dest { pio_pins = @u, pio_x = 1u, pio_y = 2u, pio_null = 3u | @x20u | 0x8@u, pio_pindirs = 4u | 0x08u |
0x40u | 0x80u, pio_exec_mov = 4u | 0x08u | Ox10u | 0x20u | @x40u, pio_status = 5u | 0x08u | @x10u | Ox20u | 0x80u, pio_pc
= 5u | @x08u | Ox20u | Ox40u, pio_isr = 6u | @x20u, pio_osr = 7u | Ox10u | 0x20u, pio_exec_out = 7u | 0x08u | Ox20u |
0x40u | 0x80u }

Enumeration of values to pass for source/destination args for instruction encoding functions.
Functions

static uint pio_encode_delay (uint cycles)

Encode just the delay slot bits of an instruction.
static uint pio_encode_sideset (uint sideset_bit_count, uint value)

Encode just the side set bits of an instruction (in non optional side set mode)
static vint pio_encode_sideset_opt (uint sideset_bit_count, uint value)

Encode just the side set bits of an instruction (in optional -opt side set mode)
static uvint pio_encode_jmp (uint addr)

Encode an unconditional JMP instruction.

static vint pio_encode_jmp_not_x (uint addr)
Encode a conditional JMP if scratch X zero instruction.
static uvint pio_encode_jmp_x_dec (uint addr)
Encode a conditional JMP if scratch X non-zero (and post-decrement X) instruction.
static uint pio_encode_jmp_not_y (uint addr)
Encode a conditional JMP if scratch Y zero instruction.
static vint pio_encode_jmp_y_dec (uint addr)
Encode a conditional JMP if scratch Y non-zero (and post-decrement Y) instruction.
static vint pio_encode_jmp_x_ne_y (uint addr)
Encode a conditional JMP if scratch X not equal scratch Y instruction.
static uint pio_encode_jmp_pin (uint addr)
Encode a conditional JMP if input pin high instruction.
static uint pio_encode_jmp_not_osre (uint addr)
Encode a conditional JMP if output shift register not empty instruction.
static uint pio_encode_wait_gpio (bool polarity, uint gpio)
Encode a WAIT for GPIO pin instruction.
static vint pio_encode_wait_pin (bool polarity, uint pin)
Encode a WAIT for pin instruction.

static uvint pio_encode_wait_irq (bool polarity, bool relative, uint irq)

Encode a WAIT for IRQ instruction.

]
4.1. Hardware APIs 189

Raspberry Pi Pico C/C++ SDK
]

static uint pio_encode_in (enum pio_src_dest src, uint count)

Encode an IN instruction.

static uint pio_encode_out (enum pio_src_dest dest, uint count)

Encode an OUT instruction.

static vint pio_encode_push (bool if_full, bool block)

Encode a PUSH instruction.

static uvint pio_encode_pull (bool if_empty, bool block)

Encode a PULL instruction.

static uint pio_encode_mov (enum pio_src_dest dest, enum pio_src_dest src)

Encode a MOV instruction.

static uint pio_encode_mov_not (enum pio_src_dest dest, enum pio_src_dest src)

Encode a MOV instruction with bit invert.

static uint pio_encode_mov_reverse (enum pio_src_dest dest, enum pio_src_dest src)

Encode a MOV instruction with bit reverse.

static vint pio_encode_irq_set (bool relative, uint irq)

Encode a IRQ SET instruction.

static uvint pio_encode_irq_wait (bool relative, uint irq)

Encode a IRQ WAIT instruction.

static uint pio_encode_irq_clear (bool relative, uint irq)

Encode a IRQ CLEAR instruction.

static uint pio_encode_set (enum pio_src_dest dest, uint value)

Encode a SET instruction.

static vint pio_encode_nop (void)

Encode a NOP instruction.
Enumeration Type Documentation
pio_src_dest
enum pio_src_dest

Enumeration of values to pass for source/destination args for instruction encoding functions.

O NoOTE

Not all values are suitable for all functions. Validity is only checked in debug mode when
PARAM_ASSERTIONS_ENABLED_PIO_INSTRUCTIONS is 1

Function Documentation
pio_encode_delay
static uint pio_encode_delay (uint cycles) [inline], [static]

Encode just the delay slot bits of an instruction.

]
4.1. Hardware APIs 190

Raspberry Pi Pico C/C++ SDK

© NOTE

This function does not return a valid instruction encoding; instead it returns an encoding of the delay slot suitable for
"OR’ing with the result of an encoding function for an actual instruction. Care should be taken when combining the
results of this function with the results of pio_encode_sideset and pio_encode_sideset_opt as they share the same
bits within the instruction encoding.

Parameters

cycles the number of cycles 0-31 (or less if side set is being used)
Returns
the delay slot bits to be ORed with an instruction encoding
pio_encode_in
static uint pio_encode_in (enum pio_src_dest src, uint count) [inline], [static]
Encode an IN instruction.

This is the equivalent of IN <src>, <count>

Parameters
sre The source to take data from
count The number of bits 1-32
Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_irq_clear

static uint pio_encode_irq_clear (bool relative, uint irq) [inline], [static]
Encode a IRQ CLEAR instruction.

This is the equivalent of IRQ CLEAR <irg> <relative>

Parameters
relative true for a IRQ CLEAR <irg> REL, false for regular IRQ CLEAR <irg>
irq the irg number 0-7

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_irq_set

static uint pio_encode_irq_set (bool relative, uint irq) [inline], [static]
Encode a IRQ SET instruction.

This is the equivalent of IRQ SET <irg> <relative>

Parameters
relative true for a IRQ SET <irg> REL, false for regular IRQ SET <irg>
irq the irg number 0-7

]
4.1. Hardware APIs 191

Raspberry Pi Pico C/C++ SDK
]

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_irq_wait

static uint pio_encode_irq_wait (bool relative, uint irq) [inline], [static]
Encode a IRQ WAIT instruction.

This is the equivalent of IRQ WAIT <irg> <relative>

Parameters
relative true for a IRQ WAIT <irq> REL, false for regular IRQ WAIT <irq>
irq the irg number 0-7

Returns

The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp
static uint pio_encode_jmp (uint addr) [inline], [static]
Encode an unconditional JMP instruction.
This is the equivalent of JiP <addr>
Parameters

addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_not_osre
static uint pio_encode_jmp_not_osre (uint addr) [inline], [static]
Encode a conditional JMP if output shift register not empty instruction.
This is the equivalent of JMP !0SRE <addr>
Parameters

addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_not_x
static uint pio_encode_jmp_not_x (uint addr) [inline], [static]

Encode a conditional JMP if scratch X zero instruction.

]
4.1. Hardware APIs 192

Raspberry Pi Pico C/C++ SDK
]

This is the equivalent of JMP !X <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_not_y
static uint pio_encode_jmp_not_y (uint addr) [inline], [static]
Encode a conditional JMP if scratch Y zero instruction.
This is the equivalent of JMP !Y <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_pin
static uint pio_encode_jmp_pin (uint addr) [inline], [static]
Encode a conditional JMP if input pin high instruction.
This is the equivalent of JUP PIN <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_x_dec
static uint pio_encode_jmp_x_dec (uint addr) [inline], [static]
Encode a conditional JMP if scratch X non-zero (and post-decrement X) instruction.
This is the equivalent of JUP X-- <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_x_ne_y

]
4.1. Hardware APIs 193

Raspberry Pi Pico C/C++ SDK
]

static uint pio_encode_jmp_x_ne_y (uint addr) [inline], [static]
Encode a conditional JMP if scratch X not equal scratch Y instruction.
This is the equivalent of JMP X!=Y <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_y_dec
static uint pio_encode_jmp_y_dec (uint addr) [inline], [static]
Encode a conditional JMP if scratch Y non-zero (and post-decrement Y) instruction.
This is the equivalent of JMP Y-- <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_mov
static uint pio_encode_mov (enum pio_src_dest dest, enum pio_src_dest src) [inline], [static]
Encode a MOV instruction.

This is the equivalent of MOV <dest>, <sre>

Parameters
dest The destination to write data to
sre The source to take data from
Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_mov_not

static uint pio_encode_mov_not (enum pio_src_dest dest, enum pio_src_dest src) [inline], [static]
Encode a MOV instruction with bit invert.

This is the equivalent of MOV <dest>, ~<src>

Parameters
dest The destination to write inverted data to
sre The source to take data from

Returns

]
4.1. Hardware APIs 194

Raspberry Pi Pico C/C++ SDK
]

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_mov_reverse

static uint pio_encode_mov_reverse (enum pio_src_dest dest, enum pio_src_dest src) [inline], [static]
Encode a MOV instruction with bit reverse.

This is the equivalent of MOV <dest>, ::i<src>

Parameters
dest The destination to write bit reversed data to
sre The source to take data from

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_nop

static uint pio_encode_nop (void) [inline], [static]

Encode a NOP instruction.

This is the equivalent of NOP which is itself encoded as MOV y, y
Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_out

static uint pio_encode_out (enum pio_src_dest dest, uint count) [inline], [static]
Encode an OUT instruction.

This is the equivalent of OUT <src>, <count>

Parameters
dest The destination to write data to
count The number of bits 1-32
Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_pull

static uint pio_encode_pull (bool if_empty, bool block) [inline], [static]
Encode a PULL instruction.

This is the equivalent of PULL <if_empty>, <block>

Parameters

]
4.1. Hardware APIs 195

Raspberry Pi Pico C/C++ SDK
]

if_empty true for PULL IF_EMPTY -, false for PULL -
block true for PULL -+ BLOCK, false for PULL -
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_push
static uint pio_encode_push (bool if_full, bool block) [inline], [static]
Encode a PUSH instruction.

This is the equivalent of PUSH <if_full>, <block>

Parameters
if_full true for PUSH IF_FULL ---, false for PUSH ---
block true for PUSH - BLOCK, false for PUSH -+
Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_set

static uint pio_encode_set (enum pio_src_dest dest, uint value) [inline], [static]
Encode a SET instruction.

This is the equivalent of SET <dest>, <value>

Parameters
dest The destination to apply the value to
value The value 0-31

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_sideset

static uint pio_encode_sideset (uint sideset_bit_count, uint value) [inline], [static]

Encode just the side set bits of an instruction (in non optional side set mode)

]
4.1. Hardware APIs 196

Raspberry Pi Pico C/C++ SDK

© NOTE

This function does not return a valid instruction encoding; instead it returns an encoding of the side set bits suitable
for "OR’ing with the result of an encoding function for an actual instruction. Care should be taken when combining
the results of this function with the results of pio_encode_delay as they share the same bits within the instruction

encoding.
Parameters
sideset_bit_count number of side set bits as would be specified via .sideset in pioasm
value the value to sideset on the pins
Returns

the side set bits to be ORed with an instruction encoding
pio_encode_sideset_opt
static uint pio_encode_sideset_opt (uint sideset_bit_count, uint value) [inline], [static]

Encode just the side set bits of an instruction (in optional -opt side set mode)

© NoTE

This function does not return a valid instruction encoding; instead it returns an encoding of the side set bits suitable
for "OR’ing with the result of an encoding function for an actual instruction. Care should be taken when combining
the results of this function with the results of pio_encode_delay as they share the same bits within the instruction

encoding.
Parameters
sideset_bit_count number of side set bits as would be specified via .sideset <n> opt in pioasm
value the value to sideset on the pins
Returns

the side set bits to be ORed with an instruction encoding
pio_encode_wait_gpio
static uint pio_encode_wait_gpio (bool polarity, uint gpio) [inline], [static]
Encode a WAIT for GPIO pin instruction.
This is the equivalent of WAIT <polarity> GPIO <gpio>
Parameters

polarity true for WAIT 1, false for WAIT 0

gpio The real GPIO number 0-31
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_wait_irq
static uint pio_encode_wait_irq (bool polarity, bool relative, uint irq) [inline], [static]
Encode a WAIT for IRQ instruction.

This is the equivalent of WAIT <polarity> IRQ <irq> <relative>

]
4.1. Hardware APIs 197

Raspberry Pi Pico C/C++ SDK
]

Parameters

polarity true for WAIT 1, false for WAIT 0

relative true for a WAIT IRQ <irq> REL, false for regular WAIT IRQ <irq>
irq the irg number 0-7
Returns

The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_wait_pin
static uint pio_encode_wait_pin (bool polarity, uint pin) [inline], [static]
Encode a WAIT for pin instruction.
This is the equivalent of WAIT <polarity> PIN <pin>
Parameters
polarity true for WAIT 1, false for WAIT @
pin The pin number 0-31 relative to the executing SM'’s input pin mapping
Returns
The instruction encoding with 0 delay and no side set value
See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

4.1.14. hardware_pll

Phase Locked Loop control APIs.

4.1.14.1. Detailed Description

There are two PLLs in RP2040. They are:
® pll_sys - Used to generate up to a 133MHz system clock

® pll_usb - Used to generate a 48MHz USB reference clock
For details on how the PLLs are calculated, please refer to the RP2040 datasheet.

4.1.14.2. Functions

void pll_init (PLL p1l, uint ref_div, uint vco_freq, uint post_div1, uint post_div2)
Initialise specified PLL.
void pll_deinit (PLL pll)

Release/uninitialise specified PLL.

]
4.1. Hardware APIs 198

Raspberry Pi Pico C/C++ SDK

4.1.14.3. Function Documentation

4.1.14.3.1. pli_deinit
void pll_deinit (PLL pll)
Release/uninitialise specified PLL.

This will turn off the power to the specified PLL. Note this function does not currently check if the PLL is in use before
powering it off so should be used with care.

Parameters

pll pll_sys or pll_usb

4.1.14.3.2. plL_init

void pll_init (PLL pll, uint ref_div, uint vco_freq, uint post_div1, uint post_div2)

Initialise specified PLL.

Parameters
pll pli_sys or pll_usb
ref_div Input clock divider.
veo_freq Requested output from the VCO (voltage controlled oscillator)
post_div1 Post Divider 1 - range 1-7. Must be >= post_div2

post_div2 Post Divider 2 - range 1-7

4.1.15. hardware_pwm

Hardware Pulse Width Modulation (PWM) API.

4.1.15.1. Detailed Description

The RP2040 PWM block has 8 identical slices. Each slice can drive two PWM output signals, or measure the frequency
or duty cycle of an input signal. This gives a total of up to 16 controllable PWM outputs. All 30 GPIOs can be driven by
the PWM block.

The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a
toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of
time spent at the high signal level is known as the duty cycle of the signal.

The default behaviour of a PWM slice is to count upward until the wrap value (pwm_config_set_wrap) is reached, and
then immediately wrap to 0. PWM slices also offer a phase-correct mode, where the counter starts to count downward
after reaching TOP, until it reaches 0 again.

Example

// Output PWM signals on pins @ and 1

#include "pico/stdlib.h"
#include "hardware/pwm.h"

int main() {

N o g b 0N =2

4.1. Hardware APIs 199

Raspberry Pi Pico C/C++ SDK
]

8 // Tell GPIO 6 and 1 they are allocated to the PWM

9 gpio_set_function(®, GPIO_FUNC_PWM);

10 gpio_set_function(1, GPIO_FUNC_PWM) ;

11

12 // Find out which PWM slice is connected to GPIO 0 (it's slice 0)
13 uint slice_num = pwm_gpio_to_slice_num(0);

14

15 // Set period of 4 cycles (6 to 3 inclusive)

16 pwm_set_wrap(slice_num, 3);

17 // Set channel A output high for one cycle before dropping

18 pwm_set_chan_level(slice_num, PWM_CHAN_A, 1);

19 // Set initial B output high for three cycles before dropping
20 pwm_set_chan_level(slice_num, PWM_CHAN_B, 3);
21 // Set the PWM running
22 pwm_set_enabled(slice_num, true);
23
24 // Note we could also use pwm_set_gpio_level(gpio, x) which looks up the
25 // correct slice and channel for a given GPIO.
26 }

4.1.15.2. Enumerations

enum pum_clkdiv_mode { PWM_DIV_FREE_RUNNING = @, PWM_DIV_B_HIGH = 1, PWM_DIV_B_RISING = 2, PWM_DIV_B_FALLING = 3 }

PWM Divider mode settings.

4.1.15.3. Functions
static uint pwm_gpio_to_slice_num (uint gpio)
Determine the PWM slice that is attached to the specified GPIO.

static uint pwm_gpio_to_channel (uint gpio)

Determine the PWM channel that is attached to the specified GPIO.

static void pwm_config_set_phase_correct (pwm_config *c, bool phase_correct)

Set phase correction in a PWM configuration.

static void pwm_config_set_clkdiv (pwm_config *c, float div)
Set PWM clock divider in a PWM configuration.

static void pwm_config_set_clkdiv_int_frac (pwm_config *c, uint8_t integer, uint8_t fract)
Set PWM clock divider in a PWM configuration using an 8:4 fractional value.

static void pwm_config_set_clkdiv_int (pwm_config *c, uint div)

Set PWM clock divider in a PWM configuration.

static void pwm_config_set_clkdiv_mode (pwm_config *c, enum pwm_clkdiv_mode mode)

Set PWM counting mode in a PWM configuration.

static void pwm_config_set_output_polarity (pwm_config *c, bool a, bool b)
Set output polarity in a PWM configuration.

static void pwm_config_set_wrap (pwm_config *c, uint16_t wrap)
Set PWM counter wrap value in a PWM configuration.

static void pwm_init (uint slice_num, pwm_config *c, bool start)

Initialise a PWM with settings from a configuration object.

]
4.1. Hardware APIs 200

Raspberry Pi Pico C/C++ SDK
]

static pwm_config pwm_get_default_config (void)
Get a set of default values for PWM configuration.
static void pwm_set_wrap (uint slice_num, uint16_t wrap)
Set the current PWM counter wrap value.
static void pwm_set_chan_level (uint slice_num, uint chan, uint16_t level)

Set the current PWM counter compare value for one channel.

static void pwm_set_both_levels (uint slice_num, uint16_t level_a, uint16_t level_b)

Set PWM counter compare values.
static void pwm_set_gpio_level (uint gpio, uint16_t level)

Helper function to set the PWM level for the slice and channel associated with a GPIO.
static uint16_t pwm_get_counter (uint slice_num)

Get PWM counter.

static void pwm_set_counter (uint slice_num, uint16_t c)

Set PWM counter.

static void pwm_advance_count (uint slice_num)

Advance PWM count.

static void pwm_retard_count (uint slice_num)
Retard PWM count.

static void pwm_set_clkdiv_int_frac (uint slice_num, uint8_t integer, uint8_t fract)
Set PWM clock divider using an 8:4 fractional value.

static void pwm_set_clkdiv (uint slice_num, float divider)

Set PWM clock divider.

static void pwm_set_output_polarity (uint slice_num, bool a, bool b)

Set PWM output polarity.

static void pwm_set_clkdiv_mode (uint slice_num, enum pwm_clkdiv_mode mode)
Set PWM divider mode.

static void pwm_set_phase_correct (uint slice_num, bool phase_correct)
Set PWM phase correct on/off.

static void pwm_set_enabled (uint slice_num, bool enabled)

Enable/Disable PWM.

static void pwm_set_mask_enabled (uint32_t mask)

Enable/Disable multiple PWM slices simultaneously.

static void pwm_set_irq_enabled (uint slice_num, bool enabled)
Enable PWM instance interrupt.

static void pwm_set_irq_mask_enabled (uint32_t slice_mask, bool enabled)
Enable multiple PWM instance interrupts.

static void pwm_clear_irq (uint slice_num)
Clear a single PWM channel interrupt.

static uint32_t pwm_get_irq_status_mask (void)

Get PWM interrupt status, raw.

]
4.1. Hardware APIs 201

Raspberry Pi Pico C/C++ SDK

static void pwm_force_irq (uint slice_num)

Force PWM interrupt.

static uint pwm_get_dreq (uint slice_num)

Return the DREQ to use for pacing transfers to a particular PWM slice.

4.1.15.4. Enumeration Type Documentation

4.1.15.4.1. pwm_clkdiv_mode

enum pwm_clkdiv_mode

PWM Divider mode settings.

Table 14. Enumerator | pyv_plv_FREE_RUNNING Free-running counting at rate dictated by fractional divider.
PWM_DIV_B_HIGH Fractional divider is gated by the PWM B pin.
PWM_DIV_B_RISING Fractional divider advances with each rising edge of the

PWM B pin.
PWM_DIV_B_FALLING Fractional divider advances with each falling edge of the
PWM B pin.

4.1.15.5. Function Documentation

4.1.15.5.1. pwm_advance_count

static void pwm_advance_count (uint slice_num) [inline], [static]
Advance PWM count.

Advance the phase of a running the counter by 1 count.

This function will return once the increment is complete.
Parameters

slice_num PWM slice number

4.1.15.5.2. pwm_clear_irq

static void pwm_clear_irq (uint slice_num) [inline], [static]
Clear a single PWM channel interrupt.

Parameters

slice_num PWM slice number

4.1.15.5.3. pwm_config_set_clkdiv

static void pwm_config_set_clkdiv (pwm_config * ¢, float div) [inline], [static]
Set PWM clock divider in a PWM configuration.

Parameters

4.1. Hardware APIs 202

Raspberry Pi Pico C/C++ SDK
]

c PWM configuration struct to modify
div Value to divide counting rate by. Must be greater than or equal to 1.

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of
events seen on the B pin input (level or edge) before passing them on to the PWM counter.

4.1.15.5.4. pwm_config_set_clkdiv_int

static void pwm_config_set_clkdiv_int (pwm_config * c, uint div) [inline], [static]

Set PWM clock divider in a PWM configuration.

Parameters
c PWM configuration struct to modify
div Integer value to reduce counting rate by. Must be greater than or equal to 1.

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of
events seen on the B pin input (level or edge) before passing them on to the PWM counter.

4.1.15.5.5. pwm_config_set_clkdiv_int_frac

static void pwm_config_set_clkdiv_int_frac (pwm_config * ¢, uint8_t integer, uint8_t fract) [inline], [static]

Set PWM clock divider in a PWM configuration using an 8:4 fractional value.

Parameters
c PWM configuration struct to modify
integer 8 bit integer part of the clock divider. Must be greater than or equal to 1.
fract 4 bit fractional part of the clock divider

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of
events seen on the B pin input (level or edge) before passing them on to the PWM counter.

4.1.15.5.6. pwm_config_set_clkdiv_mode
static void pwm_config_set_clkdiv_mode (pwm_config * ¢, enum pwm_clkdiv_mode mode) [inline], [static]
Set PWM counting mode in a PWM configuration.
Parameters
c PWM configuration struct to modify
mode PWM divide/count mode

Configure which event gates the operation of the fractional divider. The default is always-on (free-running PWM). Can
also be configured to count on high level, rising edge or falling edge of the B pin input.

4.1.15.5.7. pwm_config_set_output_polarity

static void pwm_config_set_output_polarity (pwm_config * ¢, bool a, bool b) [inline], [static]
Set output polarity in a PWM configuration.

Parameters

c PWM configuration struct to modify

]
4.1. Hardware APIs 203

Raspberry Pi Pico C/C++ SDK
]

a true to invert output A

b true to invert output B

4.1.15.5.8. pwm_config_set_phase_correct

static void pwm_config_set_phase_correct (pwm_config * c, bool phase_correct) [inline], [static]

Set phase correction in a PWM configuration.

Parameters
c PWM configuration struct to modify
phase_correct true to set phase correct modulation, false to set trailing edge

Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, the PWM
starts counting back down. The output frequency is halved when phase-correct mode is enabled.

4.1.15.5.9. pwm_config_set_wrap
static void pwm_config_set_wrap (pwm_config * c, uint16_t wrap) [inline], [static]
Set PWM counter wrap value in a PWM configuration.

Set the highest value the counter will reach before returning to 0. Also known as TOP.

Parameters
c PWM configuration struct to modify
wrap Value to set wrap to

4.1.15.5.10. pwm_force_irq

static void pwm_force_irq (uint slice_num) [inline], [static]
Force PWM interrupt.

Parameters

slice_num PWM slice number

4.1.15.5.11. pwm_get_counter
static uint16_t pwm_get_counter (uint slice_num) [inline], [static]
Get PWM counter.
Get current value of PWM counter
Parameters
slice_num PWM slice number
Returns

Current value of the PWM counter

4.1.15.5.12. pwm_get_default_config

static pwm_config pwm_get_default_config (void) [inline], [static]

]
4.1. Hardware APIs 204

Raspberry Pi Pico C/C++ SDK
]

Get a set of default values for PWM configuration.

PWM config is free-running at system clock speed, no phase correction, wrapping at 0xffff, with standard polarities for
channels A and B.

Returns

Set of default values.

4.1.15.5.13. pwm_get_dreq

static uint pwm_get_dreq (uint slice_num) [inline], [static]

Return the DREQ to use for pacing transfers to a particular PWM slice.
Parameters

slice_num PWM slice number

4.1.15.5.14. pwm_get_irg_status_mask

static uint32_t pwm_get_irq_status_mask (void) [inline], [static]
Get PWM interrupt status, raw.

Returns

Bitmask of all PWM interrupts currently set

4.1.15.5.15. pwm_gpio_to_channel

static uint pwm_gpio_to_channel (uint gpio) [inline], [static]
Determine the PWM channel that is attached to the specified GPIO.
Each slice 0 to 7 has two channels, A and B.

Returns

The PWM channel that controls the specified GPIO.

4.1.15.5.16. pwm_gpio_to_slice_num

static uint pwm_gpio_to_slice_num (uint gpio) [inline], [static]
Determine the PWM slice that is attached to the specified GPIO.
Returns

The PWM slice number that controls the specified GPIO.

4.1.15.5.17. pwm_init
static void pwm_init (uint slice_num, pwm_config * ¢, bool start) [inline], [static]
Initialise a PWM with settings from a configuration object.

Use the pwm_get_default_config() function to initialise a config structure, make changes as needed using the
pwm_config_* functions, then call this function to set up the PWM.

Parameters

]
4.1. Hardware APIs 205

Raspberry Pi Pico C/C++ SDK

slice_num PWM slice number
c The configuration to use
start If true the PWM will be started running once configured. If false you will need to start manually

using pwm_set_enabled() or pwm_set_mask_enabled()

4.1.15.5.18. pwm_retard_count

static void pwm_retard_count (uint slice_num) [inline], [static]
Retard PWM count.

Retard the phase of a running counter by 1 count

This function will return once the retardation is complete.
Parameters

slice_num PWM slice number

4.1.15.5.19. pwm_set_both_levels

static void pwm_set_both_levels (uint slice_num, uint16_t level_a, uint16_t level_b) [inline], [static]
Set PWM counter compare values.

Set the value of the PWM counter compare values, A and B.

The counter compare register is double-buffered in hardware. This means that, when the PWM is running, a write to the
counter compare values does not take effect until the next time the PWM slice wraps (or, in phase-correct mode, the
next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters
slice_num PWM slice number
level_a Value to set compare A to. When the counter reaches this value the A output is deasserted
level_b Value to set compare B to. When the counter reaches this value the B output is deasserted

4.1.15.5.20. pwm_set_chan_level

static void pwm_set_chan_level (uint slice_num, uint chan, uint16_t level) [inline], [static]
Set the current PWM counter compare value for one channel.

Set the value of the PWM counter compare value, for either channel A or channel B.

The counter compare register is double-buffered in hardware. This means that, when the PWM is running, a write to the
counter compare values does not take effect until the next time the PWM slice wraps (or, in phase-correct mode, the
next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters
slice_num PWM slice number
chan Which channel to update. 0 for A, 1 for B.
level new level for the selected output

4.1. Hardware APIs 206

Raspberry Pi Pico C/C++ SDK

4.1.15.5.21. pwm_set_clkdiv

static void pwm_set_clkdiv (uint slice_num, float divider) [inline], [static]

Set PWM clock divider.

Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating.

Parameters
slice_num PWM slice number
divider Floating point clock divider, 1.f < value < 256.f

4.1.15.5.22. pwm_set_clkdiv_int_frac
static void pwm_set_clkdiv_int_frac (uint slice_num, uint8_t integer, uint8_t fract) [inline], [static]
Set PWM clock divider using an 8:4 fractional value.

Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating.

Parameters
slice_num PWM slice number
integer 8 bit integer part of the clock divider
fract 4 bit fractional part of the clock divider

4.1.15.5.23. pwm_set_clkdiv_mode

static void pwm_set_clkdiv_mode (uint slice_num, enum pwm_clkdiv_mode mode) [inline], [static]

Set PWM divider mode.

Parameters
slice_num PWM slice number
mode Required divider mode

4.1.15.5.24. pwm_set_counter

static void pwm_set_counter (uint slice_num, uint16_t c) [inline], [static]

Set PWM counter.

Set the value of the PWM counter

Parameters
slice_num PWM slice number
c Value to set the PWM counter to

4.1.15.5.25. pwm_set_enabled
static void pwm_set_enabled (uint slice_num, bool enabled) [inline], [static]
Enable/Disable PWM.

When a PWM is disabled, it halts its counter, and the output pins are left high or low depending on exactly when the
counter is halted. When re-enabled the PWM resumes immediately from where it left off.

4.1. Hardware APIs 207

Raspberry Pi Pico C/C++ SDK
]

If the PWM'’s output pins need to be low when halted:

® The counter compare can be set to zero whilst the PWM is enabled, and then the PWM disabled once both pins are
seen to be low

® The GPIO output overrides can be used to force the actual pins low

® The PWM can be run for one cycle (i.e. enabled then immediately disabled) with a TOP of 0, count of 0 and counter
compare of 0, to force the pins low when the PWM has already been halted. The same method can be used with a
counter compare value of 1 to force a pin high.
Note that, when disabled, the PWM can still be advanced one count at a time by pulsing the PH_ADV bit in its CSR. The
output pins transition as though the PWM were enabled.

Parameters
slice_num PWM slice number
enabled true to enable the specified PWM, false to disable.

4.1.15.5.26. pwm_set_gpio_level
static void pwm_set_gpio_level (uint gpio, uint16_t level) [inline], [static]
Helper function to set the PWM level for the slice and channel associated with a GPIO.

Look up the correct slice (0 to 7) and channel (A or B) for a given GPIO, and update the corresponding counter compare
field.

This PWM slice should already have been configured and set running. Also be careful of multiple GPIOs mapping to the
same slice and channel (if GPIOs have a difference of 16).

The counter compare register is double-buffered in hardware. This means that, when the PWM is running, a write to the
counter compare values does not take effect until the next time the PWM slice wraps (or, in phase-correct mode, the
next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters
gpio GPIO to set level of

level PWM level for this GPIO

4.1.15.5.27. pwm_set_irq_enabled
static void pwm_set_irq_enabled (uint slice_num, bool enabled) [inline], [static]
Enable PWM instance interrupt.
Used to enable a single PWM instance interrupt.
Parameters
slice_num PWM block to enable/disable

enabled true to enable, false to disable

4.1.15.5.28. pwm_set_irq_mask_enabled

static void pwm_set_irq_mask_enabled (uint32_t slice_mask, bool enabled) [inline], [static]
Enable multiple PWM instance interrupts.

Use this to enable multiple PWM interrupts at once.

Parameters

]
4.1. Hardware APIs 208

Raspberry Pi Pico C/C++ SDK

slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

enabled true to enable, false to disable

4.1.15.5.29. pwm_set_mask_enabled

static void pwm_set_mask_enabled (uint32_t mask) [inline], [static]
Enable/Disable multiple PWM slices simultaneously.
Parameters

mask Bitmap of PWMs to enable/disable. Bits 0 to 7 enable slices 0-7 respectively

4.1.15.5.30. pwm_set_output_polarity

static void pwm_set_output_polarity (uint slice_num, bool a, bool b) [inline], [static]

Set PWM output polarity.

Parameters
slice_num PWM slice number
a true to invert output A
b true to invert output B

4.1.15.5.31. pwm_set_phase_correct

static void pwm_set_phase_correct (uint slice_num, bool phase_correct) [inline], [static]

Set PWM phase correct on/off.

Parameters
slice_num PWM slice number
phase_correct true to set phase correct modulation, false to set trailing edge

Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, the PWM
starts counting back down. The output frequency is halved when phase-correct mode is enabled.

4.1.15.5.32. pwm_set_wrap

static void pwm_set_wrap (uint slice_num, uint16_t wrap) [inline], [static]

Set the current PWM counter wrap value.

Set the highest value the counter will reach before returning to 0. Also known as TOP.

The counter wrap value is double-buffered in hardware. This means that, when the PWM is running, a write to the
counter wrap value does not take effect until after the next time the PWM slice wraps (or, in phase-correct mode, the
next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters
slice_num PWM slice number
wrap Value to set wrap to

4.1. Hardware APIs 209

Raspberry Pi Pico C/C++ SDK
]

4.1.16. hardware_resets

Hardware Reset API.

4.1.16.1. Detailed Description

Multiple blocks are referred to using a bitmask as follows:

The reset controller allows software control of the resets to all of the peripherals that are not critical to boot the
processor in the RP2040.

Table 1'5 Block to reset o

reset_bitmask
UsB *
UART 1 z
UART O -
Timer i
TB Manager 20
Sysinfo "
System Config °
SPI'1 v
SPI0 1
RTC N
PWM I
PLL USB 13
PLL System "2
PIO1 !
PIO 0O i
Pads - QSPI ’
Pads - bank 0 8
JTAG !
10 Bank 1 °
10 Bank 0 °
12C1 ‘
12C0 ’
DMA ’
Bus Control !
ADCO °

Example

1 #include <stdio.h>
2 #include "pico/stdlib.h"
3 #include "hardware/resets.h"

]
4.1. Hardware APIs 210

Raspberry Pi Pico C/C++ SDK
]

4
5 int main() {
6 stdio_init_all();
7
8 printf("Hello, reset!\n");
9
10 // Put the PWM block into reset
11 reset_block (RESETS_RESET_PWM_BITS) ;
12
13 // And bring it out
14 unreset_block_wait(RESETS_RESET_PWM_BITS) ;
15
16 // Put the PWM and RTC block into reset
17 reset_block (RESETS_RESET_PWM_BITS | RESETS_RESET_RTC_BITS);
18
19 // Wait for both to come out of reset
20 unreset_block_wait(RESETS_RESET_PWM_BITS | RESETS_RESET_RTC_BITS);
21
22 return 0;
23 }

4.1.16.2. Functions
static void reset_block (uint32_t bits)
Reset the specified HW blocks.

static void unreset_block (uint32_t bits)

bring specified HW blocks out of reset

static void unreset_block_wait (uint32_t bits)

Bring specified HW blocks out of reset and wait for completion.

4.1.16.3. Function Documentation

4.1.16.3.1. reset_block

static void reset_block (uint32_t bits) [inline], [static]
Reset the specified HW blocks.

Parameters

bits Bit pattern indicating blocks to reset. See reset_bitmask

4.1.16.3.2. unreset_block

static void unreset_block (uint32_t bits) [inline], [static]
bring specified HW blocks out of reset

Parameters

bits Bit pattern indicating blocks to unreset. See reset_bitmask

]
4.1. Hardware APIs 211

Raspberry Pi Pico C/C++ SDK
]

4.1.16.3.3. unreset_block_wait

static void unreset_block_wait (uint32_t bits) [inline], [static]
Bring specified HW blocks out of reset and wait for completion.
Parameters

bits Bit pattern indicating blocks to unreset. See reset_bitmask

4.1.17. hardware_rtc

Hardware Real Time Clock API.

4.1.17.1. Detailed Description

The RTC keeps track of time in human readable format and generates events when the time is equal to a preset value.
Think of a digital clock, not epoch time used by most computers. There are seven fields, one each for year (12 bit),
month (4 bit), day (5 bit), day of the week (3 bit), hour (5 bit) minute (6 bit) and second (6 bit), storing the data in binary

format.
See also
datetime_t
Example
1 #include <stdio.h>
2 #include "hardware/rtc.h"
3 #include "pico/stdlib.h”
4 #include "pico/util/datetime.h”
5]
6 int main() {
7 stdio_init_all();
8 printf("Hello RTC!\n");
9
10 char datetime_buf[256];
11 char *datetime_str = &datetime_buf[0];
12
13 // Start on Friday 5th of June 2620 15:45:00
14 datetime_t t = {
15 .year = 2020,
16 .month = 06,
17 .day = 05,
18 .dotw =5, // @ is Sunday, so 5 is Friday
19 .hour = 15,
20 .min = 45,
21 .sec = 00
22 };
23
24 // Start the RTC
25 rtc_init();
26 rtc_set_datetime(&t);
27
28 // clk_sys is >2000x faster than clk_rtc, so datetime is not updated immediately when
rtc_get_datetime() is called.
29 // tbe delay is up to 3 RTC clock cycles (which is 64us with the default clock settings)
30 sleep_us(64);
31
32 // Print the time
33 while (true) {

]
4.1. Hardware APIs 212

Raspberry Pi Pico C/C++ SDK
]

34 rtc_get_datetime(&t);
35 datetime_to_str(datetime_str, sizeof(datetime_buf), &t);
36 printf("\r%s ", datetime_str);
37 sleep_ms(100);
38 }
39 }
4.1.17.2. Typedefs

typedef void(* rtc_callback_t)(void)

4.1.17.3. Functions

void rtec_init (void)

Initialise the RTC system.

bool rtc_set_datetime (datetime_t *t)

Set the RTC to the specified time.

bool rtc_get_datetime (datetime_t *t)

Get the current time from the RTC.

bool rtc_running (void)

Is the RTC running?

void rtc_set_alarm (datetime_t *t, rtc_callback_t user_callback)

Set a time in the future for the RTC to call a user provided callback.

void rtc_enable_alarm (void)

Enable the RTC alarm (if inactive)

void rtc_disable_alarm (void)

Disable the RTC alarm (if active)

4.1.17.4. Typedef Documentation

4.1.17.4.1. rtc_callback_t

typedef void(* rtc_callback_t) (void)
Callback function type for RTC alarms
See also

rtc_set_alarm()

4.1.17.5. Function Documentation
4.1.17.5.1. rtc_disable_alarm
void rtc_disable_alarm (void)

]
4.1. Hardware APIs 213

Raspberry Pi Pico C/C++ SDK
]

Disable the RTC alarm (if active)

4.1.17.5.2. rtc_enable_alarm

void rtc_enable_alarm (void)

Enable the RTC alarm (if inactive)

4.1.17.5.3. rtc_get_datetime
bool rtc_get_datetime (datetime_t * t)
Get the current time from the RTC.
Parameters
t Pointer to a datetime_t structure to receive the current RTC time
Returns

true if datetime is valid, false if the RTC is not running.

4.1.17.5.4. rtc_init

void rte_init (void)

Initialise the RTC system.

4.1.17.5.5. rtc_running

bool rtc_running (void)

Is the RTC running?

4.1.17.5.6. rtc_set_alarm

void rtc_set_alarm (datetime_t * t, rtc_callback_t user_callback)

Set a time in the future for the RTC to call a user provided callback.

Parameters
t Pointer to a datetime_t structure containing a time in the future to fire the alarm. Any values set
to -1 will not be matched on.
user_callback pointer to a rtc_callback_t to call when the alarm fires

4.1.17.5.7. rtc_set_datetime

bool rtc_set_datetime (datetime_t * t)

Set the RTC to the specified time.

]
4.1. Hardware APIs 214

Raspberry Pi Pico C/C++ SDK

© NOTE

Note that after setting the RTC date and time, a subsequent read of the values (e.g. via ric_get_datetime()) may not
reflect the new setting until up to three cycles of the potentially-much-slower RTC clock domain have passed. This
represents a period of 64 microseconds with the default RTC clock configuration.

Parameters
t Pointer to a datetime_t structure contains time to set
Returns

true if set, false if the passed in datetime was invalid.

4.1.18. hardware_spi

Hardware SPI API.

4.1.18.1. Detailed Description

RP2040 has 2 identical instances of the Serial Peripheral Interface (SPI) controller.

The PrimeCell SSP is a master or slave interface for synchronous serial communication with peripheral devices that
have Motorola SPI, National Semiconductor Microwire, or Texas Instruments synchronous serial interfaces.

Controller can be defined as master or slave using the spi_set_slave function.

Each controller can be connected to a number of GPIO pins, see the datasheet GPIO function selection table for more
information.

4.1.18.2. Macros

® #define spi@ ((spi_inst_t *)spi@_hw)

® fdefine spil ((spi_inst_t *)spil_hw)

4.1.18.3. Enumerations

enum spi_cpha_t { SPI_CPHA_@ = @, SPI_CPHA_1 =1}

Enumeration of SPI CPHA (clock phase) values.

enum spi_cpol_t { SPI_CPOL_@ = @, SPI_CPOL_1 =1}

Enumeration of SPI CPOL (clock polarity) values.

enum spi_order_t { SPI_LSB_FIRST = @, SPI_MSB_FIRST = 1 }

Enumeration of SPI bit-order values.

4.1.18.4. Functions
uint spi_init (spi_inst_t *spi, uint baudrate)
Initialise SPI instances

Puts the SPI into a known state, and enable it. Must be called before other functions. void spi_deinit (spi_inst_t *spi):
Deinitialise SPI instances

]
4.1. Hardware APIs 215

Raspberry Pi Pico C/C++ SDK
]

Puts the SPI into a disabled state. Init will need to be called to reenable the device functions. uint spi_set_baudrate
(spi_inst_t *spi, uint baudrate):: Set SPI baudrate. uint spi_get_baudrate (const spi_inst_t *spi):: Get SPI baudrate
static uint spi_get_index (const spi_inst_t *spi):: Convert SPI instance to hardware instance number. static void
spi_set_format (spi_inst_t *spi, uint data_bits, spi_cpol_t cpol, spi_cpha_t cpha, __unused spi_order_t order):: Configure
SPI. static void spi_set_slave (spi_inst_t *spi, bool slave):: Set SPl master/slave. static bool spi_is_writable (const
spi_inst_t *spi):: Check whether a write can be done on SPI device. static bool spi_is_readable (const spi_inst_t *spi):
Check whether a read can be done on SPI device. static bool spi_is_busy (const spi_inst_t *spi):: Check whether SPI is
busy. int spi_write_read_blocking (spi_inst_t *spi, const uint8_t *src, uint8_t *dst, size_t len):: Write/Read to/from an
SPI device. int spi_write_blocking (spi_inst_t *spi, const uint8_t *src, size_t len): Write to an SPI device, blocking. int
spi_read_blocking (spi_inst_t *spi, uint8_t repeated_tx_data, uint8_t *dst, size_t len):: Read from an SPI device. int
spi_writel16_read16_blocking (spi_inst_t *spi, const uint16_t *src, uint16_t *dst, size_t len): Write/Read half words
to/from an SPI device. int spi_writel6_blocking (spi_inst_t *spi, const uint16_t *src, size_t len):: Write to an SPI
device. int spi_read16_blocking (spi_inst_t *spi, uint16_t repeated_tx_data, uint16_t *dst, size_t 1len):: Read from an
SPI device. static uint spi_get_dreq (spi_inst_t *spi, bool is_tx):: Return the DREQ to use for pacing transfers to/from
a particular SPI instance.

4.1.18.5. Macro Definition Documentation

4.1.18.5.1. spi0

#define spi@ ((spi_inst_t *)spi@_hw)
Identifier for the first (SPI 0) hardware SPI instance (for use in SPI functions).

e.g. spi_init(spi0, 48000)

4.1.18.5.2. spil

#define spi1 ((spi_inst_t *)spil_hw)
Identifier for the second (SPI 1) hardware SPI instance (for use in SPI functions).

e.g. spi_init(spi1, 48000)

4.1.18.6. Enumeration Type Documentation

4.1.18.6.1. spi_cpha_t

enum spi_cpha_t

Enumeration of SPI CPHA (clock phase) values.

4.1.18.6.2. spi_cpol_t

enum spi_cpol_t

Enumeration of SPI CPOL (clock polarity) values.

4.1.18.6.3. spi_order_t

enum spi_order_t

Enumeration of SPI bit-order values.

]
4.1. Hardware APIs 216

Raspberry Pi Pico C/C++ SDK
]

4.1.18.7. Function Documentation

4.1.18.7.1. spi_deinit

void spi_deinit (spi_inst_t * spi)

Deinitialise SPI instances

Puts the SPI into a disabled state. Init will need to be called to reenable the device functions.
Parameters

spi SPI instance specifier, either spi0 or spi1

4.1.18.7.2. spi_get_baudrate

uint spi_get_baudrate (const spi_inst_t * spi)
Get SPI baudrate.

Get SPI baudrate which was set by

See also

spi_set_baudrate

Parameters
spi SPIl instance specifier, either spi0 or spil
Returns

The actual baudrate set

4.1.18.7.3. spi_get_dreq

static uint spi_get_dreq (spi_inst_t * spi, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular SPI instance.

Parameters
spi SPI instance specifier, either spi0 or spi1
is_tx true for sending data to the SPI instance, false for receiving data from the SPI instance

4.1.18.7.4. spi_get_index

static uint spi_get_index (const spi_inst_t * spi) [inline], [static]

Convert SPI instance to hardware instance number.

Parameters
spi SPl instance
Returns

Number of SPI, 0 or 1.

4.1.18.7.5. spi_init

uint spi_init (spi_inst_t * spi, uint baudrate)

]
4.1. Hardware APIs 217

Raspberry Pi Pico C/C++ SDK

Initialise SPI instances

Puts the SPI into a known state, and enable it. Must be called before other functions.

© NoTE

There is no guarantee that the baudrate requested can be achieved exactly; the nearest will be chosen and returned

Parameters
spi SPIl instance specifier, either spi0 or spil
baudrate Baudrate requested in Hz

Returns

the actual baud rate set

4.1.18.7.6. spi_is_busy

static bool spi_is_busy (const spi_inst_t * spi) [inline], [static]

Check whether SPI is busy.

Parameters
spi SPI instance specifier, either spi0 or spil
Returns

true if SPI is busy

4.1.18.7.7. spi_is_readable

static bool spi_is_readable (const spi_inst_t * spi) [inline], [static]

Check whether a read can be done on SPI device.

Parameters
spi SPI instance specifier, either spi0 or spil
Returns

true if a read is possible i.e. data is present

4.1.18.7.8. spi_is_writable

static bool spi_is_writable (const spi_inst_t * spi) [inline], [static]

Check whether a write can be done on SPI device.

Parameters
spi SPIl instance specifier, either spi0 or spil
Returns

false if no space is available to write. True if a write is possible

4.1.18.7.9. spi_read16_blocking

int spi_read16_blocking (spi_inst_t * spi, uint16_t repeated_tx_data, uint16_t * dst, size_t len)

]
4.1. Hardware APIs 218

Raspberry Pi Pico C/C++ SDK

Read from an SPI device.

Read 1en halfwords from SPI to dst. Blocks until all data is transferred. No timeout, as SPI hardware always transfers at
a known data rate. repeated_tx_data is output repeatedly on TX as data is read in from RX. Generally this can be 0, but
some devices require a specific value here, e.g. SD cards expect 0xff

O NoOTE

SPI should be initialised with 16 data_bits using spi_set_format first, otherwise this function will only read 8

data_bits.
Parameters
spi SPl instance specifier, either spi0 or spi
repeated_tx_data Buffer of data to write
dst Buffer for read data
len Length of buffer dst in halfwords
Returns

Number of halfwords written/read

4.1.18.7.10. spi_read_blocking

int spi_read_blocking (spi_inst_t * spi, uint8_t repeated_tx_data, uint8_t * dst, size_t len)
Read from an SPI device.

Read 1en bytes from SPI to dst. Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a
known data rate. repeated_tx_data is output repeatedly on TX as data is read in from RX. Generally this can be 0, but
some devices require a specific value here, e.g. SD cards expect 0xff

Parameters
spi SPI instance specifier, either spi0 or spi
repeated_tx_data Buffer of data to write
dst Buffer for read data
len Length of buffer dst
Returns

Number of bytes written/read

4.1.18.7.11. spi_set_baudrate

uint spi_set_baudrate (spi_inst_t * spi, uint baudrate)
Set SPI baudrate.

Set SPI frequency as close as possible to baudrate, and return the actual achieved rate.

Parameters
spi SPI instance specifier, either spi0 or spi1
baudrate Baudrate required in Hz, should be capable of a bitrate of at least 2Mbps, or higher, depending on
system clock settings.
Returns

The actual baudrate set

]
4.1. Hardware APIs 219

Raspberry Pi Pico C/C++ SDK
]

4.1.18.7.12. spi_set_format

static void spi_set_format (spi_inst_t * spi, uint data_bits, spi_cpol_t cpol, spi_cpha_t cpha, __unused spi_order_t

order) [inline], [static]
Configure SPI.

Configure how the SPI serialises and deserialises data on the wire

Parameters
spi SPI instance specifier, either spi0 or spi1
data_bits Number of data bits per transfer. Valid values 4..16.
cpol SSPCLKOUT polarity, applicable to Motorola SPI frame format only.
cpha SSPCLKOUT phase, applicable to Motorola SPI frame format only
order Must be SPI_MSB_FIRST, no other values supported on the PL022

4.1.18.7.13. spi_set_slave
static void spi_set_slave (spi_inst_t * spi, bool slave) [inline], [static]
Set SPI master/slave.

Configure the SPI for master- or slave-mode operation. By default, spi_init() sets master-mode.

Parameters
spi SPI instance specifier, either spi0 or spi1
slave true to set SPI device as a slave device, false for master.

4.1.18.7.14. spi_write16_blocking
int spi_write16_blocking (spi_inst_t * spi, const uint16_t * src, size_t len)
Write to an SPI device.

Write 1en halfwords from src to SPI. Discard any data received back. Blocks until all data is transferred. No timeout, as
SPI hardware always transfers at a known data rate.

© NoOTE

SPI should be initialised with 16 data_bits using spi_set_format first, otherwise this function will only write 8
data_bits.

Parameters
spi SPIl instance specifier, either spi0 or spil
sre Buffer of data to write
len Length of buffers

Returns

Number of halfwords written/read

4.1.18.7.15. spi_write16_read16_blocking

int spi_writel6_read16_blocking (spi_inst_t * spi, const uint16_t * src, uint16_t * dst, size_t len)

]
4.1. Hardware APIs 220

Raspberry Pi Pico C/C++ SDK

Write/Read half words to/from an SPI device.

Write len halfwords from src to SPI. Simultaneously read 1len halfwords from SPI to dst. Blocks until all data is
transferred. No timeout, as SPI hardware always transfers at a known data rate.

O NoOTE

SPI should be initialised with 16 data_bits using spi_set_format first, otherwise this function will only read/write 8
data_bits.

Parameters
spi SPI instance specifier, either spi0 or spi1
src Buffer of data to write
dst Buffer for read data
len Length of BOTH buffers in halfwords
Returns

Number of halfwords written/read

4.1.18.7.16. spi_write_blocking
int spi_write_blocking (spi_inst_t * spi, const uint8_t * src, size_t len)
Write to an SPI device, blocking.

Write 1len bytes from src to SPI, and discard any data received back Blocks until all data is transferred. No timeout, as
SPI hardware always transfers at a known data rate.

Parameters
spi SPI instance specifier, either spi0 or spi
src Buffer of data to write

len Length of src
Returns

Number of bytes written/read

4.1.18.7.17. spi_write_read_blocking
int spi_write_read_blocking (spi_inst_t * spi, const uint8_t * src, uint8_t * dst, size_t len)
Write/Read to/from an SPI device.

Write 1en bytes from src to SPI. Simultaneously read 1len bytes from SPI to dst. Blocks until all data is transferred. No
timeout, as SPI hardware always transfers at a known data rate.

Parameters
spi SPI instance specifier, either spi0 or spi1
src Buffer of data to write
dst Buffer for read data

len Length of BOTH buffers
Returns

Number of bytes written/read

]
4.1. Hardware APIs 221

Raspberry Pi Pico C/C++ SDK
]

4.1.19. hardware_sync

Low level hardware spin locks, barrier and processor event APlIs.

4.1.19.1. Detailed Description

Spin Locks

The RP2040 provides 32 hardware spin locks, which can be used to manage mutually-exclusive access to shared
software and hardware resources.

Generally each spin lock itself is a shared resource, i.e. the same hardware spin lock can be used by multiple higher
level primitives (as long as the spin locks are neither held for long periods, nor held concurrently with other spin locks by
the same core - which could lead to deadlock). A hardware spin lock that is exclusively owned can be used individually
without more flexibility and without regard to other software. Note that no hardware spin lock may be acquired re-
entrantly (i.e. hardware spin locks are not on their own safe for use by both thread code and IRQs) however the default
spinlock related methods here (e.g. spin_lock_blocking) always disable interrupts while the lock is held as use by IRQ
handlers and user code is common/desirable, and spin locks are only expected to be held for brief periods.

The SDK uses the following default spin lock assignments, classifying which spin locks are reserved for
exclusive/special purposes vs those suitable for more general shared use:

Number (ID) Description

0-13 Currently reserved for exclusive use by the SDK and other
libraries. If you use these spin locks, you risk breaking SDK
or other library functionality. Each reserved spin lock used
individually has its own PICO_SPINLOCK_ID so you can
search for those.

14,15 (PICO_SPINLOCK_ID_OS1 and PICO_SPINLOCK_ID_0S2).
Currently reserved for exclusive use by an operating
system (or other system level software) co-existing with
the SDK.

16-23 (PICO_SPINLOCK_ID_STRIPED_FIRST -
PICO_SPINLOCK_ID_STRIPED_LAST). Spin locks from this
range are assigned in a round-robin fashion via
next_striped_spin_lock_num(). These spin locks are
shared, but assigning numbers from a range reduces the
probability that two higher level locking primitives using
striped spin locks will actually be using the same spin
lock.

24-31 (PICO_SPINLOCK_ID_CLAIM_FREE_FIRST -
PICO_SPINLOCK_ID_CLAIM_FREE_LAST). These are
reserved for exclusive use and are allocated on a first
come first served basis at runtime via
spin_lock_claim_unused()

4.1.19.2. Typedefs

typedef volatile uint32_t spin_lock_t

A spin lock identifier.

]
4.1. Hardware APIs 222

Raspberry Pi Pico C/C++ SDK
]

4.1.19.3. Functions

static __force_inline void __sev (void)

Insert a SEV instruction in to the code path.

static __force_inline void __wfe (void)

Insert a WFE instruction in to the code path.

static __force_inline void __wfi (void)

Insert a WFI instruction in to the code path.

static __force_inline void __dmb (void)

Insert a DMB instruction in to the code path.

static __force_inline void __dsb (void)

Insert a DSB instruction in to the code path.

static __force_inline void __isb (void)

Insert a ISB instruction in to the code path.

static __force_inline void __mem_fence_acquire (void)

Acquire a memory fence.

static __force_inline void __mem_fence_release (void)

Release a memory fence.

static __force_inline uint32_t save_and_disable_interrupts (void)
Save and disable interrupts.

static __force_inline void restore_interrupts (uint32_t status)
Restore interrupts to a specified state.

static __force_inline spin_lock_t * spin_lock_instance (uint lock_num)
Get HW Spinlock instance from number.

static __force_inline uint spin_lock_get_num (spin_lock_t *Lock)
Get HW Spinlock number from instance.

static __force_inline void spin_lock_unsafe_blocking (spin_lock_t *lock)
Acquire a spin lock without disabling interrupts (hence unsafe)

static __force_inline void spin_unlock_unsafe (spin_lock_t *1lock)
Release a spin lock without re-enabling interrupts.

static __force_inline uint32_t spin_lock_blocking (spin_lock_t *lock)
Acquire a spin lock safely.

static bool is_spin_locked (spin_lock_t *1lock)
Check to see if a spinlock is currently acquired elsewhere.

static __force_inline void spin_unlock (spin_lock_t *lock, uint32_t saved_irq)
Release a spin lock safely.

spin_lock_t * spin_lock_init (uint lock_num)
Initialise a spin lock.

void spin_locks_reset (void)
Release all spin locks.

uint next_striped_spin_lock_num (void)

Return a spin lock number from the striped range.

]
4.1. Hardware APIs 223

Raspberry Pi Pico C/C++ SDK
]

void spin_lock_claim (uint lock_num)

Mark a spin lock as used.

void spin_lock_claim_mask (uint32_t lock_num_mask)

Mark multiple spin locks as used.

void spin_lock_unclaim (uint lock_num)

Mark a spin lock as no longer used.

int spin_lock_claim_unused (bool required)

Claim a free spin lock.

bool spin_lock_is_claimed (uint lock_num)

Determine if a spin lock is claimed.

4.1.19.4. Typedef Documentation

4.1.19.4.1. spin_lock_t

typedef volatile uint32_t spin_lock_t

A spin lock identifier.

4.1.19.5. Function Documentation

4.1.19.5.1. _dmb

static __force_inline void __dmb (void) [static]
Insert a DMB instruction in to the code path.

The DMB (data memory barrier) acts as a memory barrier, all memory accesses prior to this instruction will be observed
before any explicit access after the instruction.

4.1.19.5.2. __dsb

static __force_inline void __dsb (void) [static]
Insert a DSB instruction in to the code path.

The DSB (data synchronization barrier) acts as a special kind of data memory barrier (DMB). The DSB operation
completes when all explicit memory accesses before this instruction complete.

4.1.19.5.3. __isb
static __force_inline void __isb (void) [static]
Insert a ISB instruction in to the code path.

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

]
4.1. Hardware APIs 224

Raspberry Pi Pico C/C++ SDK
]

4.1.19.5.4. _mem_fence_acquire

static __force_inline void __mem_fence_acquire (void) [static]

Acquire a memory fence.

4.1.19.5.5. __mem_fence_release

static __force_inline void __mem_fence_release (void) [static]

Release a memory fence.

4.1.19.5.6. __sev
static __force_inline void __sev (void) [static]
Insert a SEV instruction in to the code path.

The SEV (send event) instruction sends an event to both cores.

4.1.19.5.7. __wfe
static __force_inline void __wfe (void) [static]
Insert a WFE instruction in to the code path.

The WFE (wait for event) instruction waits until one of a number of events occurs, including events signalled by the SEV
instruction on either core.

4.1.19.5.8. __wfi
static __force_inline void __wfi (void) [static]
Insert a WFI instruction in to the code path.

The WFI (wait for interrupt) instruction waits for a interrupt to wake up the core.

4.1.19.5.9. is_spin_locked

static bool is_spin_locked (spin_lock_t * lock) [inline], [static]
Check to see if a spinlock is currently acquired elsewhere.
Parameters

lock Spinlock instance

4.1.19.5.10. next_striped_spin_lock_num
uint next_striped_spin_lock_num (void)
Return a spin lock number from the striped range.

Returns a spin lock number in the range PICO_SPINLOCK_ID_STRIPED_FIRST to PICO_SPINLOCK_ID_STRIPED_LAST in
a round robin fashion. This does not grant the caller exclusive access to the spin lock, so the caller must:

1. Abide (with other callers) by the contract of only holding this spin lock briefly (and with IRQs disabled - the default
via spin_lock_blocking()), and not whilst holding other spin locks.

]
4.1. Hardware APIs 225

Raspberry Pi Pico C/C++ SDK
]

2. Be OK with any contention caused by the - brief due to the above requirement - contention with other possible
users of the spin lock.
Returns

lock_num a spin lock number the caller may use (non exclusively)
See also
PICO_SPINLOCK_ID_STRIPED_FIRST

PICO_SPINLOCK_ID_STRIPED_LAST

4.1.19.5.11. restore_interrupts

static __force_inline void restore_interrupts (uint32_t status) [static]
Restore interrupts to a specified state.
Parameters

status Previous interrupt status from save_and_disable_interrupts()

4.1.19.5.12. save_and_disable_interrupts

static __force_inline uint32_t save_and_disable_interrupts (void) [static]
Save and disable interrupts.

Returns

The prior interrupt enable status for restoration later via restore_interrupts()

4.1.19.5.13. spin_lock_blocking
static __force_inline uint32_t spin_lock_blocking (spin_lock_t * lock) [static]
Acquire a spin lock safely.
This function will disable interrupts prior to acquiring the spinlock
Parameters

lock Spinlock instance
Returns

interrupt status to be used when unlocking, to restore to original state

4.1.19.5.14. spin_lock_claim
void spin_lock_claim (uint lock_num)
Mark a spin lock as used.

Method for cooperative claiming of hardware. Will cause a panic if the spin lock is already claimed. Use of this method
by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

lock_num the spin lock number

]
4.1. Hardware APIs 226

Raspberry Pi Pico C/C++ SDK
]

4.1.19.5.15. spin_lock_claim_mask
void spin_lock_claim_mask (uint32_t lock_num_mask)
Mark multiple spin locks as used.

Method for cooperative claiming of hardware. Will cause a panic if any of the spin locks are already claimed. Use of this
method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

lock_num_mask Bitfield of all required spin locks to claim (bit 0 == spin lock 0, bit 1 == spin lock 1 etc)

4.1.19.5.16. spin_lock_claim_unused
int spin_lock_claim_unused (bool required)
Claim a free spin lock.
Parameters
required if true the function will panic if none are available
Returns

the spin lock number or -1 if required was false, and none were free

4.1.19.5.17. spin_lock_get_num
static __force_inline uint spin_lock_get_num (spin_lock_t * lock) [static]
Get HW Spinlock number from instance.
Parameters
lock The Spinlock instance
Returns

The Spinlock ID

4.1.19.5.18. spin_lock_init
spin_lock_t * spin_lock_init (uint lock_num)
Initialise a spin lock.
The spin lock is initially unlocked
Parameters

lock_num The spin lock number
Returns

The spin lock instance

4.1.19.5.19. spin_lock_instance

static __force_inline spin_lock_t * spin_lock_instance (uint lock_num) [static]

Get HW Spinlock instance from number.

Parameters

]
4.1. Hardware APIs 227

Raspberry Pi Pico C/C++ SDK
]

lock_num Spinlock ID
Returns

The spinlock instance

4.1.19.5.20. spin_lock_is_claimed
bool spin_lock_is_claimed (uint lock_num)
Determine if a spin lock is claimed.
Parameters

lock_num the spin lock number
Returns
true if claimed, false otherwise
See also
spin_lock_claim

spin_lock_claim_mask

4.1.19.5.21. spin_lock_unclaim

void spin_lock_unclaim (uint lock_num)

Mark a spin lock as no longer used.

Method for cooperative claiming of hardware.
Parameters

lock_num the spin lock number to release

4.1.19.5.22. spin_lock_unsafe_blocking

static __force_inline void spin_lock_unsafe_blocking (spin_lock_t * lock) [static]
Acquire a spin lock without disabling interrupts (hence unsafe)

Parameters

lock Spinlock instance

4.1.19.5.23. spin_locks_reset

void spin_locks_reset (void)

Release all spin locks.

4.1.19.5.24. spin_unlock

static __force_inline void spin_unlock (spin_lock_t * lock, uint32_t saved_irq) [static]
Release a spin lock safely.

This function will re-enable interrupts according to the parameters.

Parameters

]
4.1. Hardware APIs 228

Raspberry Pi Pico C/C++ SDK
]

lock Spinlock instance
saved_irq Return value from the spin_lock_blocking() function.
See also

spin_lock_blocking()

4.1.19.5.25. spin_unlock_unsafe

static __force_inline void spin_unlock_unsafe (spin_lock_t * lock) [static]
Release a spin lock without re-enabling interrupts.
Parameters

lock Spinlock instance

4.1.20. hardware_timer

Low-level hardware timer API.

4.1.20.1. Detailed Description

This API provides medium level access to the timer HW. See also pico_time which provides higher levels functionality
using the hardware timer.

The timer peripheral on RP2040 supports the following features:
® single 64-bit counter, incrementing once per microsecond
® |atching two-stage read of counter, for race-free read over 32 bit bus

® Four alarms: match on the lower 32 bits of counter, IRQ on match.
By default the timer uses a one microsecond reference that is generated in the Watchdog (see Section 4.8.2) which is
derived from the clk_ref.

The timer has 4 alarms, and can output a separate interrupt for each alarm. The alarms match on the lower 32 bits of
the 64 bit counter which means they can be fired a maximum of 2232 microseconds into the future. This is equivalent
to:

® 2732 +10%6: ~4295 seconds

® 4295 + 60: ~72 minutes
The timer is expected to be used for short sleeps, if you want a longer alarm see the hardware_rtc functions.

Example

#include <stdio.h>
#include "pico/stdlib.h"

volatile bool timer_fired = false;

int64_t alarm_callback(alarm_id_t id, void *user_data) {
printf("Timer %d fired!\n", (int) id);
timer_fired = true;

9 // Can return a value here in us to fire in the future

10 return 0;

11 }

12

13 bool repeating_timer_callback(struct repeating_timer *t) {

1
2
3
4
5]
6
7
8

]
4.1. Hardware APIs 229

Raspberry Pi Pico C/C++ SDK
]

14 printf("Repeat at %1ld\n", time_us_64());
15 return true;
16 }
17
18 int main() {
19 stdio_init_all();
20 printf("Hello Timer!\n");
21
22 // Call alarm_callback in 2 seconds
23 add_alarm_in_ms (2000, alarm_callback, NULL, false);
24
25 // Wait for alarm callback to set timer_fired
26 while (!timer_fired) {
27 tight_loop_contents();
28 }
29
30 // Create a repeating timer that calls repeating_timer_callback.
31 // If the delay is > @ then this is the delay between the previous callback ending and the
next starting.
32 // If the delay is negative (see below) then the next call to the callback will be exactly
500ms after the
&3 // start of the call to the last callback
34 struct repeating_timer timer;
35 add_repeating_timer_ms (500, repeating_timer_callback, NULL, &timer);
36 sleep_ms(3000) ;
37 bool cancelled = cancel_repeating_timer (&timer);
38 printf("cancelled... %d\n", cancelled);
39 sleep_ms(2000) ;
40
41 // Negative delay so means we will call repeating_timer_callback, and call it again
42 // 500ms later regardless of how long the callback took to execute
43 add_repeating_timer_ms(-500, repeating_timer_callback, NULL, &timer);
44 sleep_ms(3000) ;
45 cancelled = cancel_repeating_timer (&timer);
46 printf("cancelled... %d\n", cancelled);
47 sleep_ms(2000) ;
48 printf("Done\n");
49 return 0;
50 }
See also
pico_time
4.1.20.2. Typedefs

typedef void(* hardware_alarm_callback_t)(uint alarm_num)

4.1.20.3. Functions

static vint32_t time_us_32 (void)
Return a 32 bit timestamp value in microseconds.
uint64_t time_us_64 (void)

Return the current 64 bit timestamp value in microseconds.

]
4.1. Hardware APIs 230

Raspberry Pi Pico C/C++ SDK
]

void busy_wait_us_32 (uint32_t delay_us)

Busy wait wasting cycles for the given (32 bit) number of microseconds.

void busy_wait_us (uint64_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds.

void busy_wait_ms (uint32_t delay_ms)

Busy wait wasting cycles for the given number of milliseconds.

void busy_wait_until (absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp.

static bool time_reached (absolute_time_t t)

Check if the specified timestamp has been reached.

void hardware_alarm_claim (uint alarm_num)

cooperatively claim the use of this hardware alarm_num

int hardware_alarm_claim_unused (bool required)

cooperatively claim the use of this hardware alarm_num

void hardware_alarm_unclaim (uint alarm_num)

cooperatively release the claim on use of this hardware alarm_num

bool hardware_alarm_is_claimed (uint alarm_num)

Determine if a hardware alarm has been claimed.

void hardware_alarm_set_callback (uint alarm_num, hardware_alarm_callback_t callback)

Enable/Disable a callback for a hardware timer on this core.

bool hardware_alarm_set_target (uint alarm_num, absolute_time_t t)

Set the current target for the specified hardware alarm.

void hardware_alarm_cancel (uint alarm_num)

Cancel an existing target (if any) for a given hardware_alarm.

void hardware_alarm_force_irq (uint alarm_num)

Force and IRQ for a specific hardware alarm.

4.1.20.4. Typedef Documentation

4.1.20.4.1. hardware_alarm_callback_t
typedef void(* hardware_alarm_callback_t) (uint alarm_num)
Callback function type for hardware alarms
Parameters
alarm_num the hardware alarm number
See also

hardware_alarm_set_callback()

4.1.20.5. Function Documentation

]
4.1. Hardware APIs 231

Raspberry Pi Pico C/C++ SDK

4.1.20.5.1. busy_wait_ms

void busy_wait_ms (uint32_t delay_ms)

Busy wait wasting cycles for the given number of milliseconds.
Parameters

delay_ms delay amount in milliseconds

4.1.20.5.2. busy_wait_until

void busy_wait_until (absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp.
Parameters

t Absolute time to wait until

4.1.20.5.3. busy_wait_us

void busy_wait_us (uint64_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds.
Parameters

delay_us delay amount in microseconds

4.1.20.5.4. busy_wait_us_32
void busy_wait_us_32 (uint32_t delay_us)
Busy wait wasting cycles for the given (32 bit) number of microseconds.
Parameters
delay_us delay amount in microseconds

Busy wait wasting cycles for the given (32 bit) number of microseconds.

4.1.20.5.5. hardware_alarm_cancel

void hardware_alarm_cancel (uint alarm_num)

Cancel an existing target (if any) for a given hardware_alarm.
Parameters

alarm_num the hardware alarm number

4.1.20.5.6. hardware_alarm_claim

void hardware_alarm_claim (uint alarm_num)

cooperatively claim the use of this hardware alarm_num

This method hard asserts if the hardware alarm is currently claimed.
Parameters

alarm_num the hardware alarm to claim

4.1. Hardware APIs 232

Raspberry Pi Pico C/C++ SDK
]

See also

hardware_claiming

4.1.20.5.7. hardware_alarm_claim_unused

int hardware_alarm_claim_unused (bool required)

cooperatively claim the use of this hardware alarm_num

This method attempts to claim an unused hardware alarm

Returns

alarm_num the hardware alarm claimed or -1 if requires was false, and none are available
See also

hardware_claiming

4.1.20.5.8. hardware_alarm_force_irq
void hardware_alarm_force_irq (uint alarm_num)
Force and IRQ for a specific hardware alarm.

This method will forcibly make sure the current alarm callback (if present) for the hardware alarm is called from an IRQ
context after this call. If an actual callback is due at the same time then the callback may only be called once.

Calling this method does not otherwise interfere with regular callback operations.
Parameters

alarm_num the hardware alarm number

4.1.20.5.9. hardware_alarm_is_claimed
bool hardware_alarm_is_claimed (uint alarm_num)
Determine if a hardware alarm has been claimed.
Parameters

alarm_num the hardware alarm number
Returns
true if claimed, false otherwise
See also

hardware_alarm_claim

4.1.20.5.10. hardware_alarm_set_callback
void hardware_alarm_set_callback (uint alarm_num, hardware_alarm_callback_t callback)
Enable/Disable a callback for a hardware timer on this core.

This method enables/disables the alarm IRQ for the specified hardware alarm on the calling core, and set the specified
callback to be associated with that alarm.

This callback will be used for the timeout set via hardware_alarm_set_target

]
4.1. Hardware APIs 233

Raspberry Pi Pico C/C++ SDK

© NOTE

This will install the handler on the current core if the IRQ handler isn't already set. Therefore the user has the
opportunity to call this up from the core of their choice

Parameters

alarm_num the hardware alarm number

callback the callback to install, or NULL to unset
See also

hardware_alarm_set_target()

4.1.20.5.11. hardware_alarm_set_target
bool hardware_alarm_set_target (uint alarm_num, absolute_time_t t)
Set the current target for the specified hardware alarm.

This will replace any existing target

Parameters
alarm_num the hardware alarm number
t the target timestamp
Returns

true if the target was "missed"; i.e. it was in the past, or occurred before a future hardware timeout could be set

4.1.20.5.12. hardware_alarm_unclaim
void hardware_alarm_unclaim (uint alarm_num)
cooperatively release the claim on use of this hardware alarm_num
Parameters
alarm_num the hardware alarm to unclaim
See also

hardware_claiming

4.1.20.5.13. time_reached
static bool time_reached (absolute_time_t t) [inline], [static]
Check if the specified timestamp has been reached.
Parameters

t Absolute time to compare against current time
Returns

true if it is now after the specified timestamp

]
4.1. Hardware APIs 234

Raspberry Pi Pico C/C++ SDK

4.1.20.5.14. time_us_32
static uint32_t time_us_32 (void) [inline], [static]
Return a 32 bit timestamp value in microseconds.

Returns the low 32 bits of the hardware timer.

© NoOTE

This value wraps roughly every 1 hour 11 minutes and 35 seconds.

Returns

the 32 bit timestamp

4.1.20.5.15. time_us_64
uint64_t time_us_64 (void)
Return the current 64 bit timestamp value in microseconds.

Returns the full 64 bits of the hardware timer. The pico_time and other functions rely on the fact that this value
monotonically increases from power up. As such it is expected that this value counts upwards and never wraps (we
apologize for introducing a potential year 5851444 bug).

Returns
the 64 bit timestamp

Return the current 64 bit timestamp value in microseconds.

4.1.21. hardware_uart

Hardware UART API.

4.1.21.1. Detailed Description

RP2040 has 2 identical instances of a UART peripheral, based on the ARM PLO11. Each UART can be connected to a
number of GPIO pins as defined in the GPIO muxing.

Only the TX, RX, RTS, and CTS signals are connected, meaning that the modem mode and IrDA mode of the PLO11 are
not supported.

Example
1 int main() {
2
3 // Initialise UART @
4 uart_init(uarte, 115200);
5]
6 // Set the GPIO pin mux to the UART - @ is TX, 1 is RX
7 gpio_set_function(®, GPIO_FUNC_UART);
8 gpio_set_function(1, GPIO_FUNC_UART);
9
10 uart_puts(uart@, "Hello world!");
11 }

4.1. Hardware APIs 235

Raspberry Pi Pico C/C++ SDK
]

4.1.21.2. Enumerations

enum vart_parity_t { UART_PARITY_NONE, UART_PARITY_EVEN, UART_PARITY_ODD }

UART Parity enumeration.

4.1.21.3. Functions

static uint vart_get_index (uvart_inst_t *uart)

Convert UART instance to hardware instance number.

uint vart_init (uvart_inst_t *uart, uint baudrate)

Initialise a UART.

void vart_deinit (uart_inst_t *uart)

Delnitialise a UART.

uint vart_set_baudrate (uart_inst_t *uart, uint baudrate)

Set UART baud rate.

static void vart_set_hw_flow (uart_inst_t *uart, bool cts, bool rts)

Set UART flow control CTS/RTS.

void vart_set_format (uart_inst_t *uart, uint data_bits, uint stop_bits, vart_parity_t parity)

Set UART data format.

static void vart_set_irq_enables (uart_inst_t *uart, bool rx_has_data, bool tx_needs_data)

Setup UART interrupts.

static bool vart_is_enabled (uart_inst_t *uart)

Test if specific UART is enabled.

void uart_set_fifo_enabled (uart_inst_t *uart, bool enabled)
Enable/Disable the FIFOs on specified UART.
static bool vart_is_writable (uart_inst_t *uart)
Determine if space is available in the TX FIFO.
static void vart_tx_wait_blocking (uart_inst_t *uart)
Wait for the UART TX fifo to be drained.
static bool vart_is_readable (uart_inst_t *uart)
Determine whether data is waiting in the RX FIFO.
static void vart_write_blocking (uart_inst_t *uart, const uint8_t *src, size_t len)

Write to the UART for transmission.

static void vart_read_blocking (uart_inst_t *uart, uint8_t *dst, size_t len)

Read from the UART.

static void vart_putc_raw (uart_inst_t *uvart, char c)

Write single character to UART for transmission.

static void vart_putc (uart_inst_t *uart, char c)

Write single character to UART for transmission, with optional CR/LF conversions.

static void vart_puts (uart_inst_t *uart, const char *s)

Write string to UART for transmission, doing any CR/LF conversions.

]
4.1. Hardware APIs 236

Raspberry Pi Pico C/C++ SDK
]

static char vart_getc (uart_inst_t *uvart)

Read a single character from the UART.

void vart_set_break (uart_inst_t *uart, bool en)

Assert a break condition on the UART transmission.

void vart_set_translate_crlf (uart_inst_t *uart, bool translate)

Set CR/LF conversion on UART.

static void vart_default_tx_wait_blocking (void)

Wait for the default UART’s TX FIFO to be drained.

bool uart_is_readable_within_us (uart_inst_t *uart, uint32_t us)

Wait for up to a certain number of microseconds for the RX FIFO to be non empty.

static uvint vart_get_dreq (uart_inst_t *uart, bool is_tx)

Return the DREQ to use for pacing transfers to/from a particular UART instance.

4.1.21.3.1. uvart0

#define vart@ ((uart_inst_t *)uart@_hw)
The UART identifiers for use in UART functions.

e.g. uart_init(uart1, 48000) Identifier for UART instance 0

4.1.21.3.2. uart1

#define vart1 ((uart_inst_t *)uart1_hw)

Identifier for UART instance 1.

4.1.21.4. Enumeration Type Documentation

4.1.21.4.1. vart_parity_t

enum uvart_parity_t

UART Parity enumeration.

4.1.21.5. Function Documentation

4.1.21.5.1. uvart_default_tx_wait_blocking

static void vart_default_tx_wait_blocking (void) [inline], [static]

Wait for the default UART’s TX FIFO to be drained.

4.1.21.5.2. uart_deinit

void vart_deinit (uart_inst_t * vart)

Delnitialise a UART.

Disable the UART if it is no longer used. Must be reinitialised before being used again.

]
4.1. Hardware APIs 237

Raspberry Pi Pico C/C++ SDK
]

Parameters

vart UART instance. uartO or uart1

4.1.21.5.3. uart_get_dreq

static uint vart_get_dreq (uvart_inst_t * vart, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular UART instance.

Parameters
vart UART instance. uart0 or uart1
is_tx true for sending data to the UART instance, false for receiving data from the UART instance

4.1.21.5.4. uart_get_index
static uint vart_get_index (uart_inst_t * uvart) [inline], [static]
Convert UART instance to hardware instance number.
Parameters

vart UART instance
Returns

Number of UART, 0 or 1.

4.1.21.5.5. uart_getc
static char vart_getc (uart_inst_t * vart) [inline], [static]
Read a single character from the UART.
This function will block until a character has been read
Parameters

uart UART instance. uart0O or uart
Returns

The character read.

4.1.21.5.6. uvart_init

uint vart_init (uart_inst_t * uart, uint baudrate)

Initialise a UART.

Put the UART into a known state, and enable it. Must be called before other functions.

This function always enables the FIFOs, and configures the UART for the following default line format:
® 8 data bits
® No parity bit

® One stop bit

]
4.1. Hardware APIs 238

Raspberry Pi Pico C/C++ SDK

© NOTE

There is no guarantee that the baudrate requested will be possible, the nearest will be chosen, and this function will
return the configured baud rate.

Parameters
vart UART instance. uart0 or uart1
baudrate Baudrate of UART in Hz
Returns

Actual set baudrate

4.1.21.5.7. uart_is_enabled
static bool uart_is_enabled (uart_inst_t * uart) [inline], [static]
Test if specific UART is enabled.
Parameters
vart UART instance. uart0 or uart1
Returns

true if the UART is enabled

4.1.21.5.8. uart_is_readable
static bool vart_is_readable (uart_inst_t * vart) [inline], [static]
Determine whether data is waiting in the RX FIFO.
Parameters
vart UART instance. uart0 or uart1
Returns

true if the RX FIFO is not empty, otherwise false.

4.1.21.5.9. uart_is_readable_within_us

bool uart_is_readable_within_us (uart_inst_t * vart, uint32_t us)

Wait for up to a certain number of microseconds for the RX FIFO to be non empty.

Parameters

uart UART instance. uart0 or uart1

us the number of microseconds to wait at most (may be 0 for an instantaneous check)
Returns

true if the RX FIFO became non empty before the timeout, false otherwise

4.1.21.5.10. uart_is_writable

static bool vart_is_writable (uart_inst_t * vart) [inline], [static]
Determine if space is available in the TX FIFO.

]
4.1. Hardware APIs 239

Raspberry Pi Pico C/C++ SDK
]

Parameters
vart UART instance. uartO or uart1
Returns

false if no space available, true otherwise

4.1.21.5.11. vart_putc

static void vart_putc (uart_inst_t * vart, char c¢) [inline], [static]
Write single character to UART for transmission, with optional CR/LF conversions.

This function will block until the character has been sent

Parameters
vart UART instance. uart0 or uart1
c The character to send

4.1.21.5.12. vart_putc_raw

static void vart_putc_raw (uart_inst_t * vart, char c) [inline], [static]
Write single character to UART for transmission.

This function will block until the entire character has been sent

Parameters
vart UART instance. uart0 or uart1
¢ The character to send

4.1.21.5.13. uart_puts

static void vart_puts (uart_inst_t * vart, const char * s) [inline], [static]
Write string to UART for transmission, doing any CR/LF conversions.

This function will block until the entire string has been sent

Parameters
vart UART instance. uartO or uart1
s The null terminated string to send

4.1.21.5.14. uart_read_blocking

static void vart_read_blocking (uart_inst_t * vart, uint8_t * dst, size_t len) [inline], [static]
Read from the UART.

This function blocks until len characters have been read from the UART

Parameters
vart UART instance. uart0O or uart
dst Buffer to accept received bytes
len The number of bytes to receive.

]
4.1. Hardware APIs 240

Raspberry Pi Pico C/C++ SDK
]

4.1.21.5.15. uart_set_baudrate

uint vart_set_baudrate (uart_inst_t * uart, uint baudrate)

Set UART baud rate.

Set baud rate as close as possible to requested, and return actual rate selected.

The UART is paused for around two character periods whilst the settings are changed. Data received during this time
may be dropped by the UART.

Any characters still in the transmit buffer will be sent using the new updated baud rate. uart_tx_wait_blocking() can be
called before this function to ensure all characters at the old baud rate have been sent before the rate is changed.

This function should not be called from an interrupt context, and the UART interrupt should be disabled before calling
this function.

Parameters
vart UART instance. uart0 or uart1
baudrate Baudrate in Hz

Returns

Actual set baudrate

4.1.21.5.16. uart_set_break

void uart_set_break (uart_inst_t * uart, bool en)

Assert a break condition on the UART transmission.

Parameters
vart UART instance. uart0O or uart
en Assert break condition (TX held low) if true. Clear break condition if false.

4.1.21.5.17. uart_set_fifo_enabled
void uart_set_fifo_enabled (uart_inst_t * uvart, bool enabled)
Enable/Disable the FIFOs on specified UART.

The UART is paused for around two character periods whilst the settings are changed. Data received during this time
may be dropped by the UART.

Any characters still in the transmit FIFO will be lost if the FIFO is disabled. uart_tx_wait_blocking() can be called before
this function to avoid this.

This function should not be called from an interrupt context, and the UART interrupt should be disabled when calling this

function.
Parameters
vart UART instance. uart0 or uart1
enabled true to enable FIFO (default), false to disable

4.1.21.5.18. uart_set_format

void vart_set_format (uart_inst_t * vart, uint data_bits, uint stop_bits, vart_parity_t parity)

Set UART data format.

]
4.1. Hardware APIs 241

Raspberry Pi Pico C/C++ SDK
]

Configure the data format (bits etc) for the UART.

The UART is paused for around two character periods whilst the settings are changed. Data received during this time
may be dropped by the UART.

Any characters still in the transmit buffer will be sent using the new updated data format. uart_tx_wait_blocking() can be
called before this function to ensure all characters needing the old format have been sent before the format is changed.

This function should not be called from an interrupt context, and the UART interrupt should be disabled before calling
this function.

Parameters
vart UART instance. uart0 or uart1
data_bits Number of bits of data. 5..8
stop_bits Number of stop bits 1..2

parity Parity option.

4.1.21.5.19. uart_set_hw_flow

static void vart_set_hw_flow (uart_inst_t * uart, bool cts, bool rts) [inline], [static]

Set UART flow control CTS/RTS.

Parameters
uart UART instance. uart0 or uart1
cts If true enable flow control of TX by clear-to-send input
rts If true enable assertion of request-to-send output by RX flow control

4.1.21.5.20. uart_set_irq_enables

static void vart_set_irq_enables (uart_inst_t * vart, bool rx_has_data, bool tx_needs_data) [inline], [static]
Setup UART interrupts.

Enable the UART's interrupt output. An interrupt handler will need to be installed prior to calling this function.

Parameters
vart UART instance. uart0 or uart1
rx_has_data If true an interrupt will be fired when the RX FIFO contains data.
tx_needs_data If true an interrupt will be fired when the TX FIFO needs data.

4.1.21.5.21. uart_set_translate_crlf

void uart_set_translate_crlf (uart_inst_t * vart, bool translate)

Set CR/LF conversion on UART.

Parameters
vart UART instance. uart0 or uart1
translate If true, convert line feeds to carriage return on transmissions

]
4.1. Hardware APIs 242

Raspberry Pi Pico C/C++ SDK
]

4.1.21.5.22. uart_tx_wait_blocking

static void vart_tx_wait_blocking (uart_inst_t * vart) [inline], [static]
Wait for the UART TX fifo to be drained.

Parameters

vart UART instance. uart0 or uart1

4.1.21.5.23. uart_write_blocking
static void vart_write_blocking (uart_inst_t * vart, const uint8_t * src, size_t len) [inline], [static]
Write to the UART for transmission.

This function will block until all the data has been sent to the UART

Parameters
vart UART instance. uart0 or uart1
src The bytes to send
len The number of bytes to send

4.1.22. hardware_vreg

Voltage Regulation API.

4.1.22.1. Functions

void vreg_set_voltage (enum vreg_voltage voltage)

Set voltage.

4.1.22.2. Function Documentation

4.1.22.2.1. vreg_set_voltage

void vreg_set_voltage (enum vreg_voltage voltage)
Set voltage.
Parameters

voltage The voltage (from enumeration vreg_voltage) to apply to the voltage regulator

4.1.23. hardware_watchdog

Hardware Watchdog Timer API.

4.1.23.1. Detailed Description

Supporting functions for the Pico hardware watchdog timer.
The RP2040 has a built in HW watchdog Timer. This is a countdown timer that can restart parts of the chip if it reaches

]
4.1. Hardware APIs 243

Raspberry Pi Pico C/C++ SDK
]

zero. For example, this can be used to restart the processor if the software running on it gets stuck in an infinite loop or
similar. The programmer has to periodically write a value to the watchdog to stop it reaching zero.

Example
1 #include <stdio.h>
2 #include "pico/stdlib.h"
3 #include "hardware/watchdog.h”
4
5 int main() {
6 stdio_init_all();
7
8 if (watchdog_caused_reboot()) {
9 printf("Rebooted by Watchdog!\n");
10 return 0;
11 } else {
12 printf("Clean boot\n");
13 }
14
15 // Enable the watchdog, requiring the watchdog to be updated every 100ms or the chip will
reboot
16 // second arg is pause on debug which means the watchdog will pause when stepping through
code
17 watchdog_enable(100, 1);
18
19 for (uint i = 0; i < 5; i++) {
20 printf("Updating watchdog %d\n", 1i);
21 watchdog_update() ;
22 }
23
24 // Wait in an infinite loop and don't update the watchdog so it reboots us
25 printf("Waiting to be rebooted by watchdog\n");
26 while(1);
27 }

4.1.23.2. Functions

void watchdog_reboot (uint32_t pc, uint32_t sp, uint32_t delay_ms)

Define actions to perform at watchdog timeout.

void watchdog_start_tick (uint cycles)
Start the watchdog tick.

void watchdog_update (void)

Reload the watchdog counter with the amount of time set in watchdog_enable.
void watchdog_enable (uint32_t delay_ms, bool pause_on_debug)

Enable the watchdog.
bool watchdog_caused_reboot (void)

Did the watchdog cause the last reboot?

bool watchdog_enable_caused_reboot (void)

Did watchdog_enable cause the last reboot?

uint32_t watchdog_get_count (void)

Returns the number of microseconds before the watchdog will reboot the chip.

]
4.1. Hardware APIs 244

Raspberry Pi Pico C/C++ SDK
]

4.1.23.3. Function Documentation

4.1.23.3.1. watchdog_caused_reboot

bool watchdog_caused_reboot (void)

Did the watchdog cause the last reboot?

Returns

true If the watchdog timer or a watchdog force caused the last reboot
Returns

false If there has been no watchdog reboot since the last power on reset. A power on reset is typically caused by a
power cycle or the run pin (reset button) being toggled.

4.1.23.3.2. watchdog_enable

void watchdog_enable (uint32_t delay_ms, bool pause_on_debug)

Enable the watchdog.

© NoTE

If watchdog_start_tick value does not give a TMHz clock to the watchdog system, then the delay_ns parameter will
not be in microseconds. See the datasheet for more details.

By default the SDK assumes a 172MHz XOSC and sets the watchdog_start_tick appropriately.

This method sets a marker in the watchdog scratch register 4 that is checked by watchdog_enable_caused_reboot. If
the device is subsequently reset via a call to watchdog_reboot (including for example by dragging a UF2 onto the RPI-
RP2), then this value will be cleared, and so watchdog_enable_caused_reboot will return false.

Parameters
delay_ms Number of milliseconds before watchdog will reboot without watchdog_update being called.
Maximum of 0x7fffff, which is approximately 8.3 seconds
pause_on_debug If the watchdog should be paused when the debugger is stepping through code

4.1.23.3.3. watchdog_enable_caused_reboot

bool watchdog_enable_caused_reboot (void)
Did watchdog_enable cause the last reboot?

Perform additional checking along with watchdog_caused_reboot to determine if a watchdog timeout initiated by
watchdog_enable caused the last reboot.

This method checks for a special value in watchdog scratch register 4 placed there by watchdog_enable. This would not
be present if a watchdog reset is initiated by watchdog_reboot or by the RP2040 bootrom (e.g. dragging a UF2 onto the
RPI-RP2 drive).

Returns

true If the watchdog timer or a watchdog force caused (see watchdog_caused_reboot) the last reboot and the
watchdog reboot happened after watchdog_enable was called

Returns

false If there has been no watchdog reboot since the last power on reset, or the watchdog reboot was not caused by a
watchdog timeout after watchdog_enable was called. A power on reset is typically caused by a power cycle or the run

]
4.1. Hardware APIs 245

Raspberry Pi Pico C/C++ SDK
]

pin (reset button) being toggled.

4.1.23.3.4. watchdog_get_count

uint32_t watchdog_get_count (void)

Returns the number of microseconds before the watchdog will reboot the chip.
Returns

The number of microseconds before the watchdog will reboot the chip.

4.1.23.3.5. watchdog_reboot

void watchdog_reboot (uint32_t pc, uint32_t sp, uint32_t delay_ms)

Define actions to perform at watchdog timeout.

O NoTE

If watchdog_start_tick value does not give a TMHz clock to the watchdog system, then the delay_ms parameter will
not be in microseconds. See the datasheet for more details.

By default the SDK assumes a 172MHz XOSC and sets the watchdog_start_tick appropriately.

Parameters
pe If Zero, a standard boot will be performed, if non-zero this is the program counter to jump to on reset.
sp If pc is non-zero, this will be the stack pointer used.
delay_ms Initial load value. Maximum value 0x7fffff, approximately 8.3s.

4.1.23.3.6. watchdog_start_tick

void watchdog_start_tick (uint cycles)

Start the watchdog tick.
Parameters

cycles This needs to be a divider that when applied to the XOSC input, produces a TMHz clock. So if the XOSC
is 172MHz, this will need to be 12.

4.1.23.3.7. watchdog_update

void watchdog_update (void)

Reload the watchdog counter with the amount of time set in watchdog_enable.

4.1.24. hardware_xosc

Crystal Oscillator (XOSC) API.

]
4.1. Hardware APIs 246

Raspberry Pi Pico C/C++ SDK

4.1.24.1. Functions
void xosc_init (void)
Initialise the crystal oscillator system.

void xosc_disable (void)

Disable the Crystal oscillator.

void xosc_dormant (void)

Set the crystal oscillator system to dormant.

4.1.24.2. Function Documentation

4.1.24.2.1. xosc_disable

void xosc_disable (void)
Disable the Crystal oscillator.

Turns off the crystal oscillator source, and waits for it to become unstable

4.1.24.2.2. xosc_dormant

void xosc_dormant (void)

Set the crystal oscillator system to dormant.

Turns off the crystal oscillator until it is woken by an interrupt. This will block and hence the entire system will stop, until
an interrupt wakes it up. This function will continue to block until the oscillator becomes stable after its wakeup.

4.1.24.2.3. xosc_init

void xosc_init (void)
Initialise the crystal oscillator system.

This function will block until the crystal oscillator has stabilised.

4.2. High Level APIs

This group of libraries provide higher level functionality that isn't hardware related or provides a richer set of
functionality above the basic hardware interfaces.

pico_async_context An async_context provides a logically single-threaded context for performing work, and
responding to asynchronous events.

async_context_freer | async_context_freertos provides an implementation of async_context that handles
tos asynchronous work in a separate FreeRTOS task.

async_context_poll | async_context_poll provides an implementation of async_context that is intended for use with
a simple polling loop on one core.

async_context_thre | async_context_threadsafe_background provides an implementation of async_context that
adsafe_background handles asynchronous work in a low priority IRQ, and there is no need for the user to poll for
work.

4.2. High Level APIs 247

Raspberry Pi Pico C/C++ SDK
]

pico_flash High level flash API.
pico_i2c_slave Functions providing an interrupt driven 12C slave interface.
pico_multicore Adds support for running code on the second processor core (core 1)
fifo Functions for the inter-core FIFOs.
lockout Functions to enable one core to force the other core to pause execution in a known state.
pico_rand Random Number Generator API.
pico_stdlib Aggregation of a core subset of Raspberry Pi Pico SDK libraries used by most executables
along with some additional utility methods.
pico_sync Synchronization primitives and mutual exclusion.
critical_section Critical Section API for short-lived mutual exclusion safe for IRQ and multi-core.
lock_core base synchronization/lock primitive support
mutex Mutex API for non IRQ mutual exclusion between cores.
sem Semaphore API for restricting access to a resource.
pico_time API for accurate timestamps, sleeping, and time based callbacks.
timestamp Timestamp functions relating to points in time (including the current time)
sleep Sleep functions for delaying execution in a lower power state.
alarm Alarm functions for scheduling future execution.
repeating_timer Repeating Timer functions for simple scheduling of repeated execution.
pico_unique_id Unique device ID access API.
pico_util Useful data structures and utility functions.
datetime Date/Time formatting.
pheap Pairing Heap Implementation.
queue Multi-core and IRQ safe queue implementation.

4.2.1. pico_async_context

An async_context provides a logically single-threaded context for performing work, and responding to asynchronous
events.

4.2.1.1. Detailed Description

Thus an async_context instance is suitable for servicing third-party libraries that are not re-entrant.

The "context" in async_context refers to the fact that when calling workers or timeouts within the async_context various
pre-conditions hold:

1. That there is a single logical thread of execution; i.e. that the context does not call any worker functions
concurrently.

2. That the context always calls workers from the same processor core, as most uses of async_context rely on
interaction with IRQs which are themselves core-specific.
THe async_context provides two mechanisms for asynchronous work:

® when_pending workers, which are processed whenever they have work pending. See

]
4.2. High Level APIs 248

Raspberry Pi Pico C/C++ SDK
]

async_context_add_when_pending_worker, async_context_remove_when_pending_worker, and
async_context_set_work_pending, the latter of which can be used from an interrupt handler to signal that servicing
work is required to be performed by the worker from the regular async_context.

® at_time workers, that are executed after at a specific time.
Note: "when pending" workers with work pending are executed before "at time" workers.

The async_context provides locking mechanisms, see async_context_acquire_lock_blocking,
async_context_release_lock and async_context_lock_check which can be used by external code to ensure execution of
external code does not happen concurrently with worker code. Locked code runs on the calling core, however
async_context_execute_sync is provided to synchronously run a function from the core of the async_context.

The SDK ships with the following default async_contexts:

async_context_poll - this context is not thread-safe, and the user is responsible for calling async_context_poll
periodically, and can use async_context_wait_for_work_until() to sleep between calls until work is needed if the user has
nothing else to do.

async_context_threadsafe_background - in order to work in the background, a low priority IRQ is used to handle
callbacks. Code is usually invoked from this IRQ context, but may be invoked after any other code that uses the async
context in another (non-IRQ) context on the same core. Calling async_context_poll is not required, and is a no-op. This
context implements async_context locking and is thus safe to call from either core, according to the specific notes on
each API.

async_context_freertos - Work is performed from a separate "async_context" task, however once again, code may also
be invoked after a direct use of the async_context on the same core that the async_context belongs to. Calling
async_context_poll is not required, and is a no-op. This context implements async_context locking and is thus safe to
call from any task, and from either core, according to the specific notes on each API.

Each async_context provides bespoke methods of instantiation which are provided in the corresponding headers (e.g.
async_context_poll.h, async_context_threadsafe_background.h, asycn_context_freertos.h). async_contexts are de-
initialized by the common async_context_deint() method.

Multiple async_context instances can be used by a single application, and they will operate independently.

4.2.1.2. Modules

async_context_freertos
async_context_freertos provides an implementation of async_context that handles asynchronous work in a
separate FreeRTOS task.

async_context_poll
async_context_poll provides an implementation of async_context that is intended for use with a simple polling loop
on one core.

async_context_threadsafe_background

async_context_threadsafe_background provides an implementation of async_context that handles asynchronous
work in a low priority IRQ, and there is no need for the user to poll for work.

4.2.1.3. Typedefs

typedef struct async_work_on_timeout async_at_time_worker_t

A "timeout" instance used by an async_context.

typedef struct async_when_pending_worker async_when_pending_worker_t

A "worker" instance used by an async_context.

]
4.2. High Level APIs 249

Raspberry Pi Pico C/C++ SDK
]

typedef struct async_context_type async_context_type_t

Implementation of an async_context type, providing methods common to that type.

4.2.1.4. Functions

static void async_context_acquire_lock_blocking (async_context_t *context)

Acquire the async_context lock.

static void async_context_release_lock (async_context_t *context)

Release the async_context lock.

static void async_context_lock_check (async_context_t *context)

Assert if the caller does not own the lock for the async_context.

static uint32_t async_context_execute_sync (async_context_t *context, uint32_t(*func)(void *param), void *param)

Execute work synchronously on the core the async_context belongs to.

static bool async_context_add_at_time_worker (async_context_t *context, async_at_time_worker_t *worker)

Add an "at time" worker to a context.
static bool async_context_add_at_time_worker_at (async_context_t *context, async_at_time_worker_t *worker,
absolute_time_t at)

Add an "at time" worker to a context.
static bool async_context_add_at_time_worker_in_ms (async_context_t *context, async_at_time_worker_t *worker, uint32_t
ms)

Add an "at time" worker to a context.

static bool async_context_remove_at_time_worker (async_context_t *context, async_at_time_worker_t *worker)

Remove an "at time" worker from a context.

static bool async_context_add_when_pending_worker (async_context_t *context, async_when_pending_worker_t *worker)

Add a "when pending" worker to a context.

static bool async_context_remove_when_pending_worker (async_context_t *context, async_when_pending_worker_t *worker)

Remove a "when pending" worker from a context.

static void async_context_set_work_pending (async_context_t *context, async_when_pending_worker_t *worker)
Mark a "when pending" worker as having work pending.

static void async_context_poll (async_context_t *context)
Perform any pending work for polling style async_context.

static void async_context_wait_until (async_context_t *context, absolute_time_t until)

sleep until the specified time in an async_context callback safe way

static void async_context_wait_for_work_until (async_context_t *context, absolute_time_t until)

Block until work needs to be done or the specified time has been reached.

static void async_context_wait_for_work_ms (async_context_t *context, uint32_t ms)

Block until work needs to be done or the specified number of milliseconds have passed.
static uint async_context_core_num (const async_context_t *context)

Return the processor core this async_context belongs to.

static void async_context_deinit (async_context_t *context)

End async_context processing, and free any resources.

]
4.2. High Level APIs 250

Raspberry Pi Pico C/C++ SDK
]

4.2.1.5. Typedef Documentation

4.2.1.5.1. async_at_time_worker_t
typedef struct async_work_on_timeout async_at_time_worker_t
A "timeout" instance used by an async_context.

A "timeout" represents some future action that must be taken at a specific time. Its methods are called from the
async_context under lock at the given time

See also
async_context_add_worker_at

async_context_add_worker_in_ms

4.2.1.5.2. async_when_pending_worker_t
typedef struct async_when_pending_worker async_when_pending_worker_t
A "worker" instance used by an async_context.

A "worker" represents some external entity that must do work in response to some external stimulus (usually an IRQ).
Its methods are called from the async_context under lock at the given time

See also
async_context_add_worker_at

async_context_add_worker_in_ms

4.2.1.5.3. async_context_type_t

typedef struct async_context_type async_context_type_t

Implementation of an async_context type, providing methods common to that type.

4.2.1.6. Function Documentation

4.2.1.6.1. async_context_acquire_lock_blocking
static void async_context_acquire_lock_blocking (async_context_t * context) [inline], [static]
Acquire the async_context lock.

The owner of the async_context lock is the logic owner of the async_context and other work related to this
async_context will not happen concurrently.

This method may be called in a nested fashion by the the lock owner.

]
4.2. High Level APIs 251

Raspberry Pi Pico C/C++ SDK

© NOTE

the async_context lock is nestable by the same caller, so an internal count is maintained

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from
within any worker method called by the async_context or from any other non-IRQ context.

Parameters
context the async_context
See also

async_context_release_lock

4.2.1.6.2. async_context_add_at_time_worker

static bool async_context_add_at_time_worker (async_context_t * context, async_at_time worker_t * worker) [inline],
[static]

Add an "at time" worker to a context.
An "at time" worker will run at or after a specific point in time, and is automatically when (just before) it runs.

The time to fire is specified in the next_time field of the worker.

O NoTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from
within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "at time" worker to add
Returns

true if the worker was added, false if the worker was already present.

4.2.1.6.3. async_context_add_at_time_worker_at

static bool async_context_add_at_time_worker_at (async_context_t * context, async_at_time_worker_t * worker,
absolute_time_t at) [inline], [static]

Add an "at time" worker to a context.
An "at time" worker will run at or after a specific point in time, and is automatically when (just before) it runs.

The time to fire is specified by the at parameter.

O NoTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from
within any worker method called by the async_context or from any other non-IRQ context.

Parameters
context the async_context
worker the "at time" worker to add

]
4.2. High Level APIs 252

Raspberry Pi Pico C/C++ SDK
]

at the time to fire at
Returns

true if the worker was added, false if the worker was already present.

4.2.1.6.4. async_context_add_at_time_worker_in_ms

static bool async_context_add_at_time_worker_in_ms (async_context_t * context, async_at_time_worker_t * worker, uint32_t
ms) [inline], [static]

Add an "at time" worker to a context.
An "at time" worker will run at or after a specific point in time, and is automatically when (just before) it runs.

The time to fire is specified by a delay via the ms parameter

© NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from
within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "at time" worker to add

ms the number of milliseconds from now to fire after
Returns

true if the worker was added, false if the worker was already present.

4.2.1.6.5. async_context_add_when_pending_worker

static bool async_context_add_when_pending_worker (async_context_t * context, async_when_pending_worker_t * worker)
[inline], [static]

Add a "when pending" worker to a context.

An "when pending" worker will run when it is pending (can be set via async_context_set_work_pending), and is NOT
automatically removed when it runs.

The time to fire is specified by a delay via the ms parameter

O NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from
within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "when pending" worker to add
Returns

true if the worker was added, false if the worker was already present.

]
4.2. High Level APIs 253

Raspberry Pi Pico C/C++ SDK
]

4.2.1.6.6. async_context_core_num
static uint async_context_core_num (const async_context_t * context) [inline], [static]
Return the processor core this async_context belongs to.
Parameters
context the async_context
Returns

the physical core number

4.2.1.6.7. async_context_deinit

static void async_context_deinit (async_context_t * context) [inline], [static]

End async_context processing, and free any resources.

Note the user should clean up any resources associated with workers in the async_context themselves.

Asynchronous (non-polled) async_contexts guarantee that no callback is being called once this method returns.

Parameters
context the async_context
4.2.1.6.8. async_context_execute_sync

static uint32_t async_context_execute_sync (async_context_t * context, uint32_t(*)(void *param) func, void * param)
[inline], [static]

Execute work synchronously on the core the async_context belongs to.

This method is intended for code external to the async_context (e.g. another thread/task) to execute a function with the
same guarantees (single core, logical thread of execution) that async_context workers are called with.

© NoOTE

you should NOT call this method while holding the async_context's lock

Parameters

context the async_context

func the function to call

param the paramter to pass to the function
Returns

the return value from func

4.2.1.6.9. async_context_lock_check

static void async_context_lock_check (async_context_t * context) [inline], [static]

Assert if the caller does not own the lock for the async_context.

]
4.2. High Level APIs 254

Raspberry Pi Pico C/C++ SDK

© NOTE

this method is thread-safe

Parameters

context the async_context

4.2.1.6.10. async_context_poll
static void async_context_poll (async_context_t * context) [inline], [static]
Perform any pending work for polling style async_context.

For a polled async_context (e.g. async_context_poll) the user is responsible for calling this method periodically to
perform any required work.

This method may immediately perform outstanding work on other context types, but is not required to.
Parameters

context the async_context

4.2.1.6.11. async_context_release_lock

static void async_context_release_lock (async_context_t * context) [inline], [static]

Release the async_context lock.

© NoTE

the async_context lock may be called in a nested fashion, so an internal count is maintained. On the outermost
release, When the outermost lock is released, a check is made for work which might have been skipped while the
lock was held, and any such work may be performed during this call IF the call is made from the same core that the
async_context belongs to.

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from
within any worker method called by the async_context or from any other non-IRQ context.

Parameters
context the async_context
See also

async_context_acquire_lock_blocking

4.2.1.6.12. async_context_remove_at_time_worker

static bool async_context_remove_at_time_worker (async_context_t * context, async_at_time_worker_t * worker) [inline],
[static]

Remove an "at time" worker from a context.

4.2. High Level APIs 255

Raspberry Pi Pico C/C++ SDK

© NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from
within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "at time" worker to remove
Returns

true if the worker was removed, false if the instance not present.

4.2.1.6.13. async_context_remove_when_pending_worker

static bool async_context_remove_when_pending_worker (async_context_t * context, async_when_pending worker_t * worker)
[inline], [static]

Remove a "when pending" worker from a context.

© NoTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from
within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "when pending" worker to remove
Returns

true if the worker was removed, false if the instance not present.

4.2.1.6.14. async_context_set_work_pending

static void async_context_set_work_pending (async_context_t * context, async_when_pending_worker_t * worker) [inline],
[static]

Mark a "when pending" worker as having work pending.

The worker will be run from the async_context at a later time.

© NOTE

this method may be called from any context including IRQs

Parameters
context the async_context
worker the "when pending" worker to mark as pending.

4.2.1.6.15. async_context_wait_for_work_ms
static void async_context_wait_for_work_ms (async_context_t * context, uint32_t ms) [inline], [static]

Block until work needs to be done or the specified number of milliseconds have passed.

]
4.2. High Level APIs 256

Raspberry Pi Pico C/C++ SDK

© NOTE

this method should not be called from a worker callback

Parameters
context the async_context
ms the number of milliseconds to return after if no work is required

4.2.1.6.16. async_context_wait_for_work_until

static void async_context_wait_for_work_until (async_context t * context, absolute_time_t until) [inline], [static]

Block until work needs to be done or the specified time has been reached.

© NOTE

this method should not be called from a worker callback

Parameters
context the async_context
until the time to return at if no work is required

4.2.1.6.17. async_context_wait_until

static void async_context_wait_until (async_context_t * context, absolute_time_t until) [inline], [static]

sleep until the specified time in an async_context callback safe way

© NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from
within any worker method called by the async_context or from any other non-IRQ context.

Parameters
context the async_context
until the time to sleep until

4.2.1.7. async_context_freertos

async_context_freertos provides an implementation of async_context that handles asynchronous work in a separate
FreeRTOS task.

4.2.1.7.1. Functions
bool async_context_freertos_init (async_context_freertos_t *self, async_context_freertos_config_t *config)
Initialize an async_context_freertos instance using the specified configuration.

static async_context_freertos_config_t async_context_freertos_default_config (void)

Return a copy of the default configuration object used by async_context_freertos_init_with_defaults()

]
4.2. High Level APIs 257

Raspberry Pi Pico C/C++ SDK
]

static bool async_context_freertos_init_with_defaults (async_context_freertos_t *self)

Initialize an async_context_freertos instance with default values.

4.2.1.7.2. Function Documentation

async_context_freertos_default_config

static async_context_freertos_config_t async_context_freertos_default_config (void) [inline], [static]
Return a copy of the default configuration object used by async_context_freertos_init_with_defaults()

The caller can then modify just the settings it cares about, and call async_context_freertos_init()

Returns

the default configuration object

async_context_freertos_init

bool async_context_freertos_init (async_context_freertos_t * self, async_context_freertos_config_t * config)
Initialize an async_context_freertos instance using the specified configuration.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling
async_context_deinit().

Parameters

self a pointer to async_context_freertos structure to initialize

config the configuration object specifying characteristics for the async_context
Returns

true if initialization is successful, false otherwise

async_context_freertos_init_with_defaults

static bool async_context_freertos_init_with_defaults (async_context_freertos_t * self) [inline], [static]
Initialize an async_context_freertos instance with default values.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling
async_context_deinit().

Parameters
self a pointer to async_context_freertos structure to initialize
Returns

true if initialization is successful, false otherwise

4.2.1.7.3. async_context_poll

async_context_poll provides an implementation of async_context that is intended for use with a simple polling loop on
one core.

Detailed Description
It is not thread safe.

The async_context_poll method must be called periodically to handle asynchronous work that may now be pending.
async_context_wait_for_work_until() may be used to block a polling loop until there is work to do, and prevent tight
spinning.

Functions

]
4.2. High Level APIs 258

Raspberry Pi Pico C/C++ SDK
]

bool async_context_poll_init_with_defaults (async_context_poll_t *self)

Initialize an async_context_poll instance with default values.
Function Documentation
async_context_poll_init_with_defaults
bool async_context_poll_init_with_defaults (async_context _poll_t * self)
Initialize an async_context_poll instance with default values.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling
async_context_deinit().

Parameters

self a pointer to async_context_poll structure to initialize
Returns
true if initialization is successful, false otherwise
async_context_threadsafe_background

async_context_threadsafe_background provides an implementation of async_context that handles asynchronous work
in a low priority IRQ, and there is no need for the user to poll for work.

Detailed Description

O NoTE

The workers used with this async_context MUST be safe to call from an IRQ.

Functions

bool async_context_threadsafe_background_init (async_context_threadsafe_background_t *self,

async_context_threadsafe_background_config_t *config)

Initialize an async_context_threadsafe_background instance using the specified configuration.

async_context_threadsafe_background_config_t async_context_threadsafe_background_default_config (void)

Return a copy of the default configuration object used by
async_context_threadsafe_background_init_with_defaults()

static bool async_context_threadsafe_background_init_with_defaults (async_context_threadsafe_background_t *self)

Initialize an async_context_threadsafe_background instance with default values.
Function Documentation
async_context_threadsafe_background_default_config
async_context_threadsafe_background_config_t async_context_threadsafe_background_default_config (void)
Return a copy of the default configuration object used by async_context_threadsafe_background_init_with_defaults()
The caller can then modify just the settings it cares about, and call async_context_threadsafe_background_init()
Returns
the default configuration object
async_context_threadsafe_background_init

bool async_context_threadsafe_background_init (async_context_threadsafe_background_t * self,

async_context_threadsafe_background_config_t * config)
Initialize an async_context_threadsafe_background instance using the specified configuration.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling
async_context_deinit().

]
4.2. High Level APIs 259

Raspberry Pi Pico C/C++ SDK
]

Parameters
self a pointer to async_context_threadsafe_background structure to initialize
config the configuration object specifying characteristics for the async_context
Returns

true if initialization is successful, false otherwise
async_context_threadsafe_background_init_with_defaults

static bool async_context_threadsafe_background_init_with_defaults (async_context_threadsafe_background_t * self)
[inline], [static]

Initialize an async_context_threadsafe_background instance with default values.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling
async_context_deinit().

Parameters
self a pointer to async_context_threadsafe_background structure to initialize
Returns

true if initialization is successful, false otherwise

4.2.2. pico_flash

High level flash API.

4.2.2.1. Detailed Description

Flash cannot be erased or written to when in XIP mode. However the system cannot directly access memory in the flash
address space when not in XIP mode.

It is therefore critical that no code or data is being read from flash while flash is been written or erased.

If only one core is being used, then the problem is simple - just disable interrupts; however if code is running on the
other core, then it has to be asked, nicely, to avoid flash for a bit. This is hard to do if you don’t have complete control of
the code running on that core at all times.

This library provides a flash_safe_execute method which calls a function back having sucessfully gotten into a state
where interrupts are disabled, and the other core is not executing or reading from flash.

How it does this is dependent on the supported environment (Free RTOS SMP or pico_multicore). Additionally the user
can provide their own mechanism by providing a strong definition of get_flash_safety_helper().

Using the default settings, flash_safe_execute will only call the callback function if the state is safe otherwise returning
an error (or an assert depending on PICO_FLASH_ASSERT_ON_UNSAFE).

There are conditions where safety would not be guaranteed:

1. FreeRTOS smp with configNUM_CORES=1 - FreeRTOS still uses pico_multicore in this case, so flash_safe_execute
cannot know what the other core is doing, and there is no way to force code execution between a FreeRTOS core
and a non FreeRTOS core.

2. FreeRTOS non SMP with pico_multicore - Again, there is no way to force code execution between a FreeRTOS core
and a non FreeRTOS core.

3. pico_multicore without flash_safe_execute_core_init() having been called on the other core - The
flash_safe_execute method does not know if code is executing on the other core, so it has to assume it is. Either
way, it is not able to intervene if flash_safe_execute_core_init() has not been called on the other core.

Fortunately, all is not lost in this situation, you may:

]
4.2. High Level APIs 260

Raspberry Pi Pico C/C++ SDK
]

® Set PICO_FLASH_ASSUME_COREO_SAFE=1 to explicitly say that core 0 is never using flash.

® Set PICO_FLASH_ASSUME_CORE1_SAFE=1 to explicitly say that core 1 is never using flash.

4.2.2.2. Functions

bool flash_safe_execute_core_init (void)

Initialize a core such that the other core can lock it out during flash_safe_execute.

bool flash_safe_execute_core_deinit (void)

De-initialize work done by flash_safe_execute_core_init.

int flash_safe_execute (void(*func)(void *), void *param, uint32_t enter_exit_timeout_ms)

Execute a function with IRQs disabled and with the other core also not executing/reading flash.

flash_safety_helper_t * get_flash_safety_helper (void)

Internal method to return the flash safety helper implementation.

4.2.2.3. Function Documentation

4.2.2.3.1. flash_safe_execute

int flash_safe_execute (void(*)(void *) func, void * param, uint32_t enter_exit_timeout_ms)

Execute a function with IRQs disabled and with the other core also not executing/reading flash.

Parameters

func the function to call

param the parameter to pass to the function

enter_exit_timeout_ms the timeout for each of the enter/exit phases when coordinating with the other core
Returns

PICO_OK on success (the function will have been called). PICO_TIMEOUT on timeout (the function may have been
called). PICO_ERROR_NOT_PERMITTED if safe execution is not possible (the function will not have been called).
PICO_ERROR_INSUFFICIENT_RESOURCES if the method fails due to dynamic resource exhaustion (the function will not
have been called)

O NoTE

if PICO_FLASH_ASSERT_ON_UNSAFE is 1, this function will assert in debug mode vs returning
PICO_ERROR_NOT_PERMITTED

4.2.2.3.2. flash_safe_execute_core_deinit

bool flash_safe_execute_core_deinit (void)

De-initialize work done by flash_safe_execute_core_init.
Returns

true on success

]
4.2. High Level APIs 261

Raspberry Pi Pico C/C++ SDK

4.2.2.3.3. flash_safe_execute_core_init

bool flash_safe_execute_core_init (void)

Initialize a core such that the other core can lock it out during flash_safe_execute.

© NOTE

This is not necessary for FreeRTOS SMP, but should be used when launching via multicore_launch_core1

Returns

true on success; there is no need to call flash_safe_execute_core_deinit() on failure.

4.2.2.3.4. get_flash_safety_helper
flash_safety_helper_t * get_flash_safety_helper (void)
Internal method to return the flash safety helper implementation.

Advanced users can provide their own implementation of this function to perform different inter-core coordination
before disabling XIP mode.

Returns

the flash_safety_helper_t

4.2.3. pico_i2c_slave

Functions providing an interrupt driven 12C slave interface.

4.2.3.1. Detailed Description

This 12C slave helper library configures slave mode and hooks the relevant I2C IRQ so that a user supplied handler is
called with enumerated 12C events.

An example application slave_mem_i2c, which makes use of this library, can be found in pico_examples.

4.2.3.2. Typedefs

typedef enum i2c_slave_event_t i2c_slave_event_t

I12C slave event types.

typedef void(* i2c_slave_handler_t)(i2c_inst_t *i2c, i2c_slave_event_t event)

I12C slave event handler.

4.2.3.3. Enumerations

enum i2c_slave_event_t { I2C_SLAVE_RECEIVE, I2C_SLAVE_REQUEST, I2C_SLAVE_FINISH }

I2C slave event types.

]
4.2. High Level APIs 262

https://github.com/raspberrypi/pico-examples/blob/master/i2c/slave_mem_i2c/slave_mem_i2c.c

Raspberry Pi Pico C/C++ SDK

4.2.3.4. Functions

void i2c_slave_init (i2c_inst_t *i2c, uint8_t address, i2c_slave_handler_t handler)

Configure an 12C instance for slave mode.

void i2c_slave_deinit (i2c_inst_t *i2c)

Restore an |12C instance to master mode.

4.2.3.5. Typedef Documentation

4.2.3.5.1. i2c_slave_event_t

typedef enum i2c_slave_event_t i2c_slave_event_t

12C slave event types.

4.2.3.5.2. i2c_slave_handler_t

typedef void(* i2c_slave_handler_t) (i2c_inst_t *i2c, i2c_slave_event_t event)
12C slave event handler.

The event handler will run from the 12C ISR, so it should return quickly (under 25 us at 400 kb/s). Avoid blocking inside
the handler and split large data transfers across multiple calls for best results. When sending data to master, up to
i2c_get_write_available() bytes can be written without blocking. When receiving data from master, up to
i2c_get_read_available() bytes can be read without blocking.

Parameters
i2c Either i2c0 ori2c1
event Event type.

4.2.3.6. Enumeration Type Documentation

4.2.3.6.1. i2c_slave_event_t

enum i2c_slave_event_t

12C slave event types.

Table 16. Enumerator | 196 g1 AVE_RECEIVE Data from master is available for reading.
12C_SLAVE_REQUEST Master is requesting data.
12C_SLAVE_FINISH Master has sent a Stop or Restart signal.

4.2.3.7. Function Documentation

4.2.3.7.1. i2c_slave_deinit

void i2c_slave_deinit (i2c_inst_t * i2c)
Restore an 12C instance to master mode.

Parameters

4.2. High Level APIs 263

Raspberry Pi Pico C/C++ SDK
]

i2c

Either i2c0 ori2c1

4.2.3.7.2. i2c_slave_init

void i2c_slave_init (i2c_inst_t * i2c¢, uint8_t address, i2c_slave_handler_t handler)

Configure an I12C instance for slave mode.

Parameters
i2c I2C instance.
address 7-bit slave address.
handler

Callback for events from 12C master. It will run from the 12C ISR, on the CPU core where the slave was

initialised.

4.2.4. pico_multicore

Adds support for running code on the second processor core (core 1)

4.2.4.1. Detailed Description

Example

0w N O s~ WN =

W W W W WNRNDNNDNNDNDNNDNRNS 2 2O 2 3 a2 3 a2 a2
A OWON -2 ©® W N D WN -2 © OOOLNOO O M WOWN -2 © O

#include <stdio.h>
#include "pico/stdlib.h"
#include "pico/multicore.h”

#define FLAG_VALUE 123

void corel_entry() {

int

multicore_fifo_push_blocking(FLAG_VALUE) ;
uint32_t g = multicore_fifo_pop_blocking();
if (g != FLAG_VALUE)

printf("Hmm, that's not right on core 1!\n");
else

printf("Its all gone well on core 1!");
while (1)

tight_loop_contents();

main() {

stdio_init_all();

printf("Hello, multicore!\n");
multicore_launch_corel(corel_entry);
// Wait for it to start up

uint32_t g = multicore_fifo_pop_blocking();

if (g != FLAG_VALUE)
printf("Hmm, that's not right on core @!\n");

4.2. High Level APIs

264

Raspberry Pi Pico C/C++ SDK
]

35 else {

36 multicore_fifo_push_blocking(FLAG_VALUE) ;
37 printf("It's all gone well on core 0!");
38 }

39

40 }

4.2.4.2. Modules
fifo
Functions for the inter-core FIFOs.

lockout

Functions to enable one core to force the other core to pause execution in a known state.

4.2.4.3. Functions

void multicore_reset_corel (void)

Reset core 1.

void multicore_launch_corel (void(*entry)(void))

Run code on core 1.

void multicore_launch_corel_with_stack (void(*entry)(void), uint32_t *stack_bottom, size_t stack_size_bytes)

Launch code on core 1 with stack.

void multicore_launch_corel_raw (void(*entry)(void), uint32_t *sp, uint32_t vector_table)

Launch code on core 1 with no stack protection.

4.2.4.4. Function Documentation

4.2.4.4.1. multicore_launch_core1
void multicore_launch_corel (void(*)(void) entry)
Run code on core 1.

Wake up (a previously reset) core 1 and enter the given function on core 1 using the default core 1 stack (below core 0
stack).

core 1 must previously have been reset either as a result of a system reset or by calling multicore_reset_corel
core 1 will use the same vector table as core 0
Parameters
entry Function entry point
See also

multicore_reset_core1

4.2.4.4.2. multicore_launch_core1_raw

void multicore_launch_corel_raw (void(*)(void) entry, uint32_t * sp, uint32_t vector_table)

]
4.2. High Level APIs 265

Raspberry Pi Pico C/C++ SDK
]

Launch code on core 1 with no stack protection.
Wake up (a previously reset) core 1 and start it executing with a specific entry point, stack pointer and vector table.
This is a low level function that does not provide a stack guard even if USE_STACK_GUARDS is defined

core 1 must previously have been reset either as a result of a system reset or by calling multicore_reset_corel

Parameters
entry Function entry point
sp Pointer to the top of the core 1 stack
vector_table address of the vector table to use for core 1
See also

multicore_reset_corel

4.2.4.4.3. multicore_launch_core1_with_stack

void multicore_launch_corel_with_stack (void(*)(void) entry, uint32_t * stack_bottom, size_t stack_size_bytes)
Launch code on core 1 with stack.

Wake up (a previously reset) core 1 and enter the given function on core 1 using the passed stack for core 1
core 1 must previously have been reset either as a result of a system reset or by calling multicore_reset_core1

core 1 will use the same vector table as core 0

Parameters
entry Function entry point
stack_bottom The bottom (lowest address) of the stack
stack_size_bytes The size of the stack in bytes (must be a multiple of 4)
See also

multicore_reset_core1

4.2.4.4.4. multicore_reset_core1
void multicore_reset_corel (void)
Reset core 1.

This function can be used to reset core 1 into its initial state (ready for launching code against via
multicore_launch_core1 and similar methods)

O NoOTE

this function should only be called from core 0

4.2.4.5. fifo

Functions for the inter-core FIFOs.

]
4.2. High Level APIs 266

Raspberry Pi Pico C/C++ SDK

4.2.4.5.1. Detailed Description

The RP2040 contains two FIFOs for passing data, messages or ordered events between the two cores. Each FIFO is 32
bits wide, and 8 entries deep. One of the FIFOs can only be written by core 0, and read by core 1. The other can only be
written by core 1, and read by core 0.

O NoTE

The inter-core FIFOs are a very precious resource and are frequently used for SDK functionality (e.g. during core 1
launch or by the lockout functions). Additionally they are often required for the exclusive use of an RTOS (e.g.
FreeRTOS SMP). For these reasons it is suggested that you do not use the FIFO for your own purposes unless none
of the above concerns apply; the majority of cases for transferring data between cores can be eqaully well handled
by using a queue

4.2.4.5.2. Functions
static bool multicore_fifo_rvalid (void)
Check the read FIFO to see if there is data available (sent by the other core)

static bool multicore_fifo_wready (void)

Check the write FIFO to see if it has space for more data.

void multicore_fifo_push_blocking (uint32_t data)
Push data on to the write FIFO (data to the other core).

bool multicore_fifo_push_timeout_us (uint32_t data, uint64_t timeout_us)

Push data on to the write FIFO (data to the other core) with timeout.

uint32_t multicore_fifo_pop_blocking (void)

Pop data from the read FIFO (data from the other core).

bool multicore_fifo_pop_timeout_us (uint64_t timeout_us, uint32_t *out)

Pop data from the read FIFO (data from the other core) with timeout.

static void multicore_fifo_drain (void)

Discard any data in the read FIFO.

static void multicore_fifo_clear_irq (void)

Clear FIFO interrupt.

static uint32_t multicore_fifo_get_status (void)
Get FIFO statuses.

4.2.4.5.3. Function Documentation

multicore_fifo_clear_irq
static void multicore_fifo_clear_irq (void) [inline], [static]
Clear FIFO interrupt.

Note that this only clears an interrupt that was caused by the ROE or WOF flags. To clear the VLD flag you need to use
one of the 'pop' or 'drain’ functions.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs
See also
multicore_fifo_get_status

multicore_fifo_drain

4.2. High Level APIs 267

Raspberry Pi Pico C/C++ SDK
]

static void multicore_fifo_drain (void) [inline], [static]

Discard any data in the read FIFO.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs
multicore_fifo_get_status

static uint32_t multicore_fifo_get_status (void) [inline], [static]

Get FIFO statuses.
Returns

The statuses as a bitfield

Bit Description

3 Sticky flag indicating the RX FIFO was read when empty
(ROE). This read was ignored by the FIFO.

2 Sticky flag indicating the TX FIFO was written when full
(WOF). This write was ignored by the FIFO.

1 Value is 1 if this core’s TX FIFO is not full (i.e. if FIFO_WR
is ready for more data)

0 Value is 1 if this core’s RX FIFO is not empty (i.e. if
FIFO_RD is valid)

See the note in the fifo section for considerations regarding use of the inter-core FIFOs
multicore_fifo_pop_blocking

uint32_t multicore_fifo_pop_blocking (void)

Pop data from the read FIFO (data from the other core).

This function will block until there is data ready to be read Use multicore_fifo_rvalid() to check if data is ready to be read
if you don’t want to block.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs
Returns

32 bit data from the read FIFO.

multicore_fifo_pop_timeout_us

bool multicore_fifo_pop_timeout_us (uint64_t timeout_us, uint32_t * out)

Pop data from the read FIFO (data from the other core) with timeout.

This function will block until there is data ready to be read or the timeout is reached

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

Parameters

timeout_us the timeout in microseconds

out the location to store the popped data if available
Returns

true if the data was popped and a value copied into out, false if the timeout occurred before data could be popped
multicore_fifo_push_blocking

void multicore_fifo_push_blocking (uint32_t data)

Push data on to the write FIFO (data to the other core).

]
4.2. High Level APIs 268

Raspberry Pi Pico C/C++ SDK
]

This function will block until there is space for the data to be sent. Use multicore_fifo_wready() to check if it is possible
to write to the FIFO if you don’t want to block.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs
Parameters
data A 32 bit value to push on to the FIFO
multicore_fifo_push_timeout_us
bool multicore_fifo_push_timeout_us (uint32_t data, uint64_t timeout_us)
Push data on to the write FIFO (data to the other core) with timeout.

This function will block until there is space for the data to be sent or the timeout is reached

Parameters
data A 32 bit value to push on to the FIFO
timeout_us the timeout in microseconds
Returns

true if the data was pushed, false if the timeout occurred before data could be pushed
multicore_fifo_rvalid

static bool multicore_fifo_rvalid (void) [inline], [static]

Check the read FIFO to see if there is data available (sent by the other core)

See the note in the fifo section for considerations regarding use of the inter-core FIFOs
Returns

true if the FIFO has data in it, false otherwise

multicore_fifo_wready

static bool multicore_fifo_wready (void) [inline], [static]

Check the write FIFO to see if it has space for more data.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs
Returns

true if the FIFO has room for more data, false otherwise

4.2.4.5.4. lockout

Functions to enable one core to force the other core to pause execution in a known state.
Detailed Description

Sometimes it is useful to enter a critical section on both cores at once. On a single core system a critical section can
trivially be entered by disabling interrupts, however on a multi-core system that is not sufficient, and unless the other
core is polling in some way, then it will need to be interrupted in order to cooperatively enter a blocked state.

These "lockout" functions use the inter core FIFOs to cause an interrupt on one core from the other, and manage waiting
for the other core to enter the "locked out" state.

The usage is that the "victim" core .. i.e the core that can be ‘locked out" by the other core calls
multicore_lockout_victim_init to hook the FIFO interrupt. Note that either or both cores may do this.

]
4.2. High Level APIs 269

Raspberry Pi Pico C/C++ SDK

© NOTE

When "locked out" the victim core is paused (it is actually executing a tight loop with code in RAM) and has
interrupts disabled. This makes the lockout functions suitable for use by code that wants to write to flash (at which
point no code may be executing from flash)

The core which wishes to lockout the other core calls multicore_lockout_start_blocking or
multicore_lockout_start_timeout_us to interrupt the other "victim" core and wait for it to be in a "locked out" state. Once
the lockout is no longer needed it calls multicore_lockout_end_blocking or multicore_lockout_end_timeout_us to release
the lockout and wait for confirmation.

© NoTE

Because multicore lockout uses the intercore FIFOs, the FIFOs cannot be used for any other purpose

Functions

void multicore_lockout_victim_init (void)

Initialize the current core such that it can be a "victim" of lockout (i.e. forced to pause in a known state by the other
core)

bool multicore_lockout_victim_is_initialized (uint core_num)

Determine if multicore_victim_init() has been called on the specified core.

void multicore_lockout_start_blocking (void)

Request the other core to pause in a known state and wait for it to do so.

bool multicore_lockout_start_timeout_us (uint64_t timeout_us)

Request the other core to pause in a known state and wait up to a time limit for it to do so.

void multicore_lockout_end_blocking (void)

Release the other core from a locked out state amd wait for it to acknowledge.

bool multicore_lockout_end_timeout_us (uint64_t timeout_us)

Release the other core from a locked out state amd wait up to a time limit for it to acknowledge.
Function Documentation
multicore_lockout_end_blocking
void multicore_lockout_end_blocking (void)

Release the other core from a locked out state amd wait for it to acknowledge.

O NoOTE

The other core must previously have been "locked out" by calling a multicore_lockout_start_function from this core

multicore_lockout_end_timeout_us
bool multicore_lockout_end_timeout_us (uint64_t timeout_us)
Release the other core from a locked out state amd wait up to a time limit for it to acknowledge.

The other core must previously have been "locked out" by calling a multicore_lockout_start_function from this core

]
4.2. High Level APIs 270

Raspberry Pi Pico C/C++ SDK

© NOTE

be very careful using small timeout values, as a timeout here will leave the "lockout" functionality in a bad state. It is
probably preferable to use multicore_lockout_end_blocking anyway as if you have already waited for the victim core
to enter the lockout state, then the victim core will be ready to exit the lockout state very quickly.

Parameters
timeout_us the timeout in microseconds
Returns
true if the other core successfully exited locked out state within the timeout, false otherwise
multicore_lockout_start_blocking
void multicore_lockout_start_blocking (void)
Request the other core to pause in a known state and wait for it to do so.

The other (victim) core must have previously executed multicore_lockout_victim_init()

O NoOTE

multicore_lockout_start_ functions are not nestable, and must be paired with a call to a corresponding
multicore_lockout_end_blocking

multicore_lockout_start_timeout_us
bool multicore_lockout_start_timeout_us (uintb4_t timeout_us)
Request the other core to pause in a known state and wait up to a time limit for it to do so.

The other core must have previously executed multicore_lockout_victim_init()

O NoOTE

multicore_lockout_start_ functions are not nestable, and must be paired with a call to a corresponding
multicore_lockout_end_blocking

Parameters
timeout_us the timeout in microseconds
Returns
true if the other core entered the locked out state within the timeout, false otherwise
multicore_lockout_victim_init
void multicore_lockout_victim_init (void)

Initialize the current core such that it can be a "victim" of lockout (i.e. forced to pause in a known state by the other
core)

This code hooks the intercore FIFO IRQ, and the FIFO may not be used for any other purpose after this.
multicore_lockout_victim_is_initialized
bool multicore_lockout_victim_is_initialized (uint core_num)

Determine if multicore_victim_init() has been called on the specified core.

]
4.2. High Level APIs 271

Raspberry Pi Pico C/C++ SDK

© NOTE

this state persists even if the core is subsequently reset; therefore you are advised to always call
multicore_lockout_victim_init() again after resetting a core, which had previously been initialized.

Parameters
core_num the core number (0 or 1)
Returns

true if multicore_victim_init() has been called on the specified core, false otherwise.

4.2.5. pico_rand

Random Number Generator API.

4.2.5.1. Detailed Description
This module generates random numbers at runtime utilizing a number of possible entropy sources and uses those
sources to modify the state of a 128-bit 'Pseudo Random Number Generator' implemented in software.

The random numbers (32 to 128 bit) to be supplied are read from the PRNG which is used to help provide a large
number space.

The following (multiple) sources of entropy are available (of varying quality), each enabled by a #define:

® The Ring Oscillator (ROSC) (PICO_RAND_ENTROPY_SRC_ROSC == 1): PICO_RAND_ROSC_BIT_SAMPLE_COUNT
bits are gathered from the ring oscillator "random bit" and mixed in each time. This should not be used if the ROSC
is off, or the processor is running from the ROSC.

O NOTE

the maximum throughput of ROSC bit sampling is controlled by
PICO_RAND_MIN_ROSC_BIT_SAMPLE_TIME_US which defaults to 10us, i.e. 100,000 bits per second.

® Time (PICO_RAND_ENTROPY_SRC_TIME == 1): The 64-bit microsecond timer is mixed in each time.

® Bus Performance Counter (PICO_RAND_ENTROPY_SRC_BUS_PERF_COUNTER == 1): One of the bus fabric’s
performance counters is mixed in each time.

O NoOTE

All entropy sources are hashed before application to the PRNG state machine.

The first time a random number is requested, the 128-bit PRNG state must be seeded. Multiple entropy sources are also
available for the seeding operation:

® The Ring Oscillator (ROSC) (PICO_RAND_SEED_ENTROPY_SRC_ROSC == 1): 64 bits are gathered from the ring
oscillator "random bit" and mixed into the seed.

* Time (PICO_RAND_SEED_ENTROPY_SRC_TIME == 1): The 64-bit microsecond timer is mixed into the seed.

® Board Identifier (PICO_RAND_SEED_ENTROPY_SRC_BOARD_ID == 1): The board id via pico_get_unique_board_id is
mixed into the seed.

® RAM hash (PICO_RAND_SEED_ENTROPY_SRC_RAM_HASH (PICO_RAND_SEED_ENTROPY_SRC_RAM_HASH): The
hashed contents of a subset of RAM are mixed in. Initial RAM contents are undefined on power up, so provide a
reasonable source of entropy. By default the last 1K of RAM (which usually contains the core 0 stack) is hashed,
which may also provide for differences after each warm reset.

]
4.2. High Level APIs 272

Raspberry Pi Pico C/C++ SDK
]

With default settings, the seed generation takes approximately 1 millisecond while subsequent random numbers
generally take between 10 and 20 microseconds to generate.

pico_rand methods may be safely called from either core or from an IRQ, but be careful in the latter case as the calls
may block for a number of microseconds waiting on more entropy.

4.2.5.2. Functions

void get_rand_128 (rng_128_t *rand128)

Get 128-bit random number.

uint64_t get_rand_64 (void)

Get 64-bit random number.

uint32_t get_rand_32 (void)

Get 32-bit random number.

4.2.5.3. Function Documentation

4.2.5.3.1. get_rand_128
void get_rand_128 (rng_128_t * rand128)
Get 128-bit random number.

This method may be safely called from either core or from an IRQ, but be careful in the latter case as the call may block
for a number of microseconds waiting on more entropy.

Parameters

rand128 Pointer to storage to accept a 128-bit random number

4.2.5.3.2. get_rand_32
uint32_t get_rand_32 (void)
Get 32-bit random number.

This method may be safely called from either core or from an IRQ, but be careful in the latter case as the call may block
for a number of microseconds waiting on more entropy.

Returns

32-bit random number

4.2.5.3.3. get_rand_64
uintb4_t get_rand_64 (void)
Get 64-bit random number.

This method may be safely called from either core or from an IRQ, but be careful in the latter case as the call may block
for a number of microseconds waiting on more entropy.

Returns

64-bit random number

]
4.2. High Level APIs 273

Raspberry Pi Pico C/C++ SDK
]

4.2.6. pico_stdlib

Aggregation of a core subset of Raspberry Pi Pico SDK libraries used by most executables along with some additional
utility methods.

4.2.6.1. Detailed Description

Including pico_stdlib gives you everything you need to get a basic program running which prints to stdout or flashes a
LED

This library aggregates:
® hardware_uart
® hardware_gpio
® pico_binary_info
® pico_runtime
® pico_platform
® pico_printf
® pico_stdio
® pico_standard_link

® pico_util
There are some basic default values used by these functions that will default to usable values, however, they can be
customised in a board definition header via config.h or similar

4.2.6.2. Functions

void setup_default_uvart (void)
Set up the default UART and assign it to the default GPIOs.

void set_sys_clock_48mhz (void)

Initialise the system clock to 48MHz.

void set_sys_clock_pll (uint32_t vco_freq, uint post_div1, uint post_div2)

Initialise the system clock.

bool check_sys_clock_khz (uint32_t freq_khz, uint *vco_freq_out, uint *post_div1_out, uint *post_div2_out)

Check if a given system clock frequency is valid/attainable.

static bool set_sys_clock_khz (uint32_t freq_khz, bool required)

Attempt to set a system clock frequency in khz.

4.2.6.3. Function Documentation

4.2.6.3.1. check_sys_clock_khz

bool check_sys_clock_khz (uint32_t freq_khz, uint * vco_freq_out, uint * post_divi_out, uint * post_div2_out)
Check if a given system clock frequency is valid/attainable.

Parameters

]
4.2. High Level APIs 274

Raspberry Pi Pico C/C++ SDK
]

freq_khz Requested frequency
veo_freq_out On success, the voltage controlled oscillator frequency to be used by the SYS PLL
post_div1_out On success, The first post divider for the SYS PLL
post_div2_out On success, The second post divider for the SYS PLL.
Returns

true if the frequency is possible and the output parameters have been written.

4.2.6.3.2. set_sys_clock_48mhz
void set_sys_clock_48mhz (void)
Initialise the system clock to 48MHz.

Set the system clock to 48MHz, and set the peripheral clock to match.

4.2.6.3.3. set_sys_clock_khz
static bool set_sys_clock_khz (uint32_t freq_khz, bool required) [inline], [static]
Attempt to set a system clock frequency in khz.

Note that not all clock frequencies are possible; it is preferred that you use
src/rp2_common/hardware_clocks/scripts/vcocalc.py to calculate the parameters for use with set_sys_clock_pll

Parameters

freq_khz Requested frequency

required if true then this function will assert if the frequency is not attainable.
Returns

true if the clock was configured

4.2.6.3.4. set_sys_clock_pll

void set_sys_clock_pll (uint32_t vco_freq, uint post_div1, uint post_div2)

Initialise the system clock.

Parameters
veo_freq The voltage controller oscillator frequency to be used by the SYS PLL
post_div1 The first post divider for